

Modelling energy efficiency of buildings based on open-data

Tania CERQUITELLI Department of Control and Computer engineering, Politecnico di Torino, Italy

Multidisciplinary research team

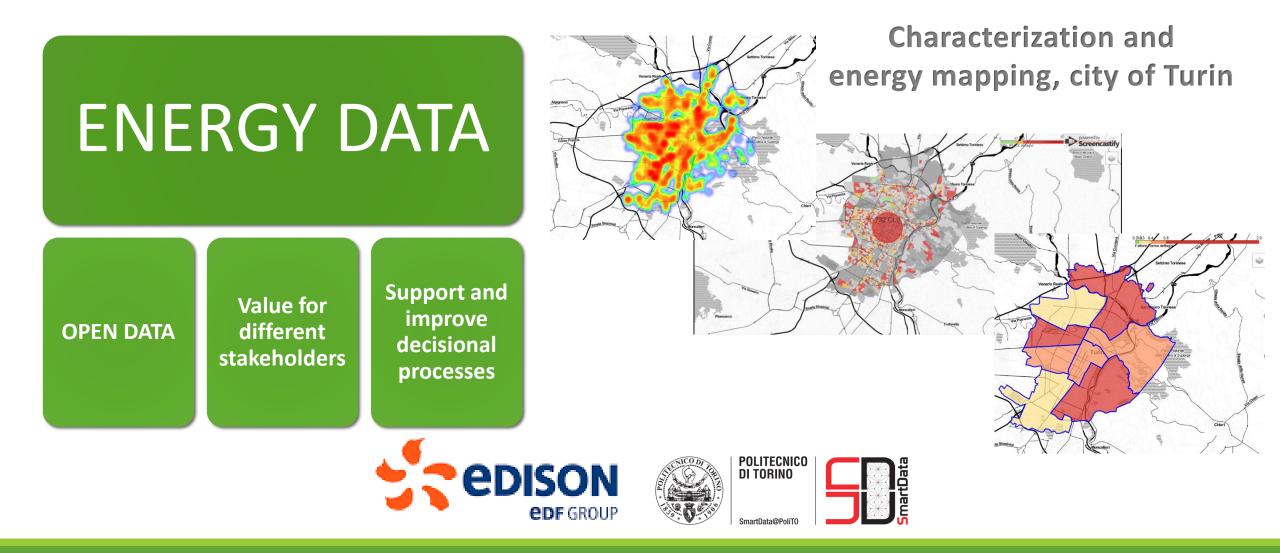
Professors of Politecnico di Torino with orthogonal multidisciplinary skills:

- Prof. Tania Cerquitelli (DAUIN) Principal Investigator Prof. Elena Baralis (DAUIN) Prof. Marco Mellia (DET) Prof. Alfonso Capozzoli (DENERG) Research fellows:
 - Evelina Di Corso (DAUIN)
 - Stefano Proto (DAUIN)
 - Daniele Mauro Mazzarelli (DAUIN)

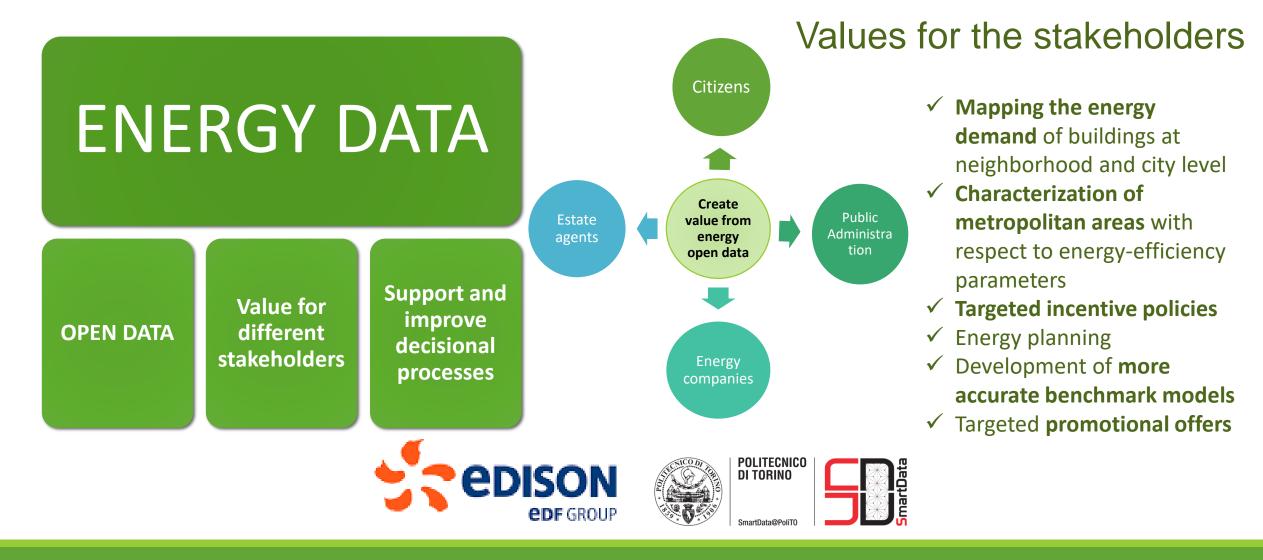
Edison researchers:

Ing. Silvia Casagrande Ing. Martina Tamburini

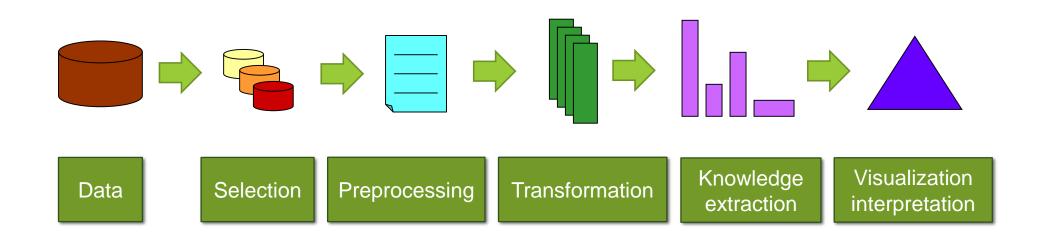
Main research objective



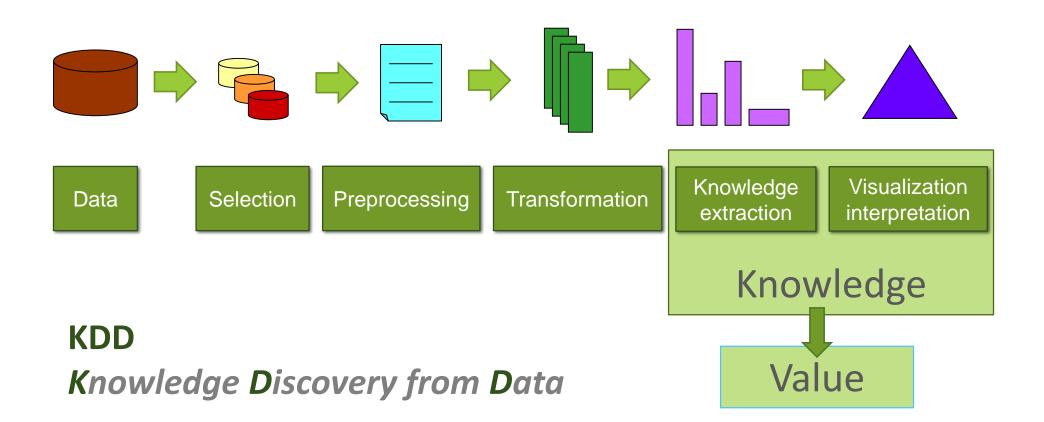
Main research objective



Knowledge extraction process



Knowledge extraction process



KDD from energy data: two key roles

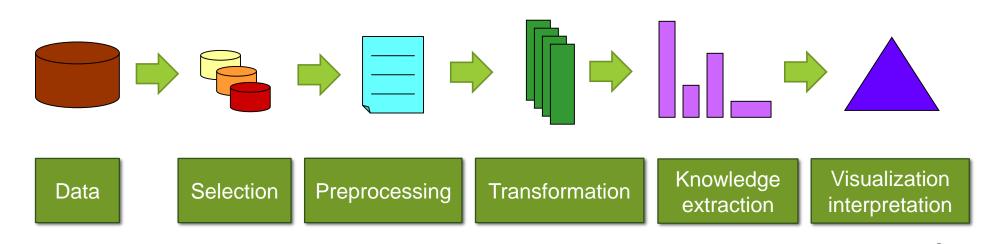
DATA SCIENTIST

- Design innovative and efficient algorithms
- Select the **optimal techniques** to address the challenges of the analysis
- Identify the best **trade-off** between knowledge quality and execution time

ENERGY SCIENTIST

- Support the data pre-processing phase
- Assess extracted knowledge
- Strong involvement in the algorithm definition phase, which should respect/include physical laws and correctly model physical events

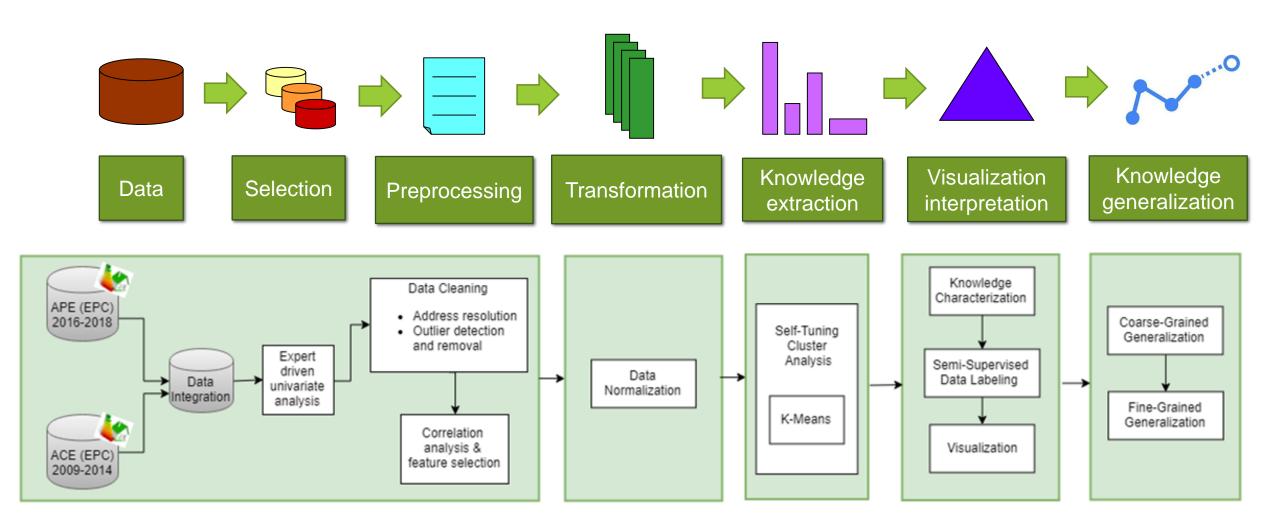
Knowledge extraction process



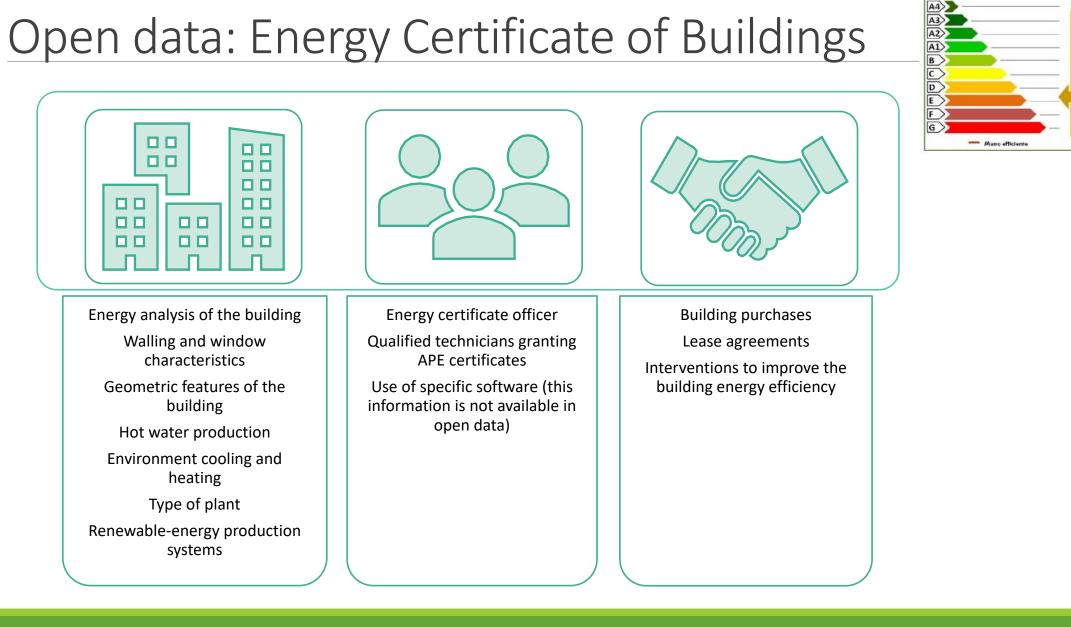
Innovations in the data analytics process

- Tailor the analytic steps to the different key aspects of energy data
- Automate the data analytics workflow to reduce the manual user intervention
- Translate the domain-expert knowledge into automated procedures
- Generalize the extracted knowledge
- Design **informative dashboards** to support the translation of the extracted knowledge into effective actions

Knowledge extraction process from EPCs



Open data: Energy Certificate of Buildings



10

Prestazione energetica globale

+ Più efficiente

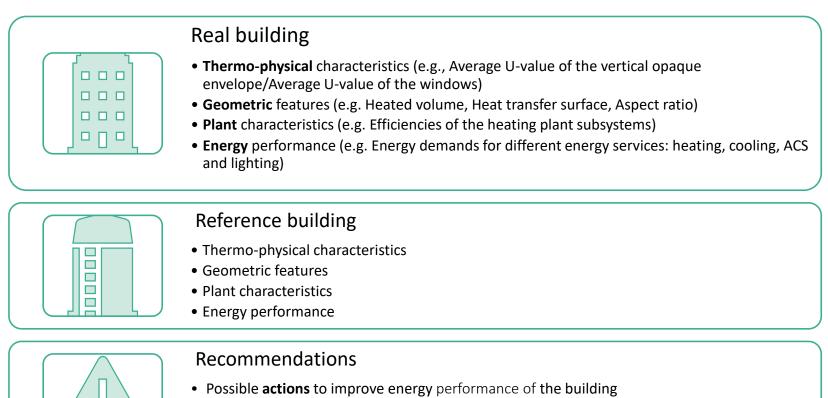
EDIFICIO A ENERGIA QUASI ZERO

CLASSE ENERGETICA X

EP_{gl,nren} kWh/m² anno

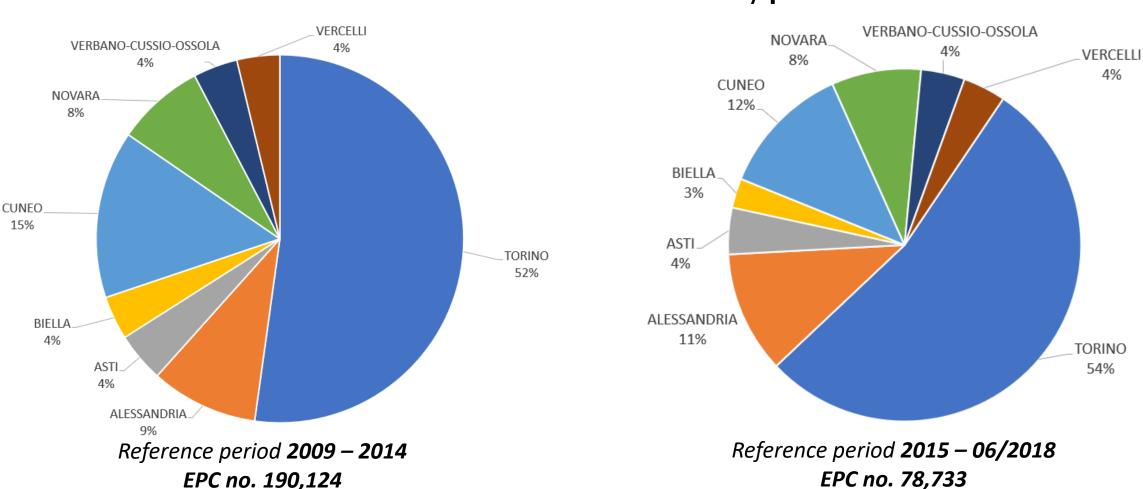
Case study: EPCs in Piedmont Region

Open data available on the Sistema Piemonte service system * Each APE is characterized by **175 attributes**, both categorical and numerical



C

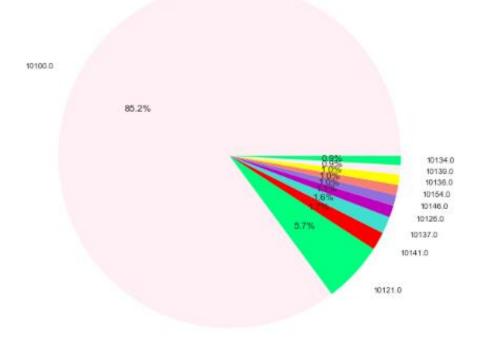
EPCs in Piedmont Region: 2 data sources



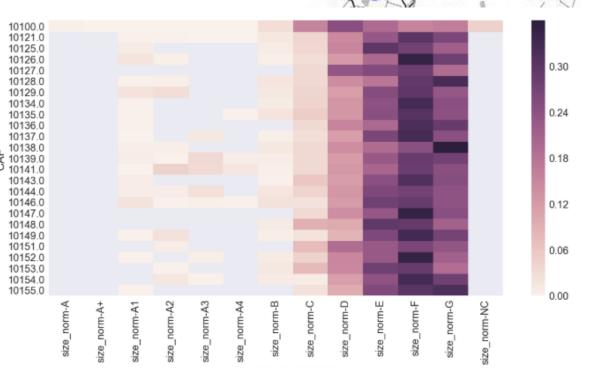
Distribution of the number of EPCs by **province**

Case study: Turin

- The city of has been selected for the variability and cardinality of EPCs in the dataset
- The number of EPCs is 47,623

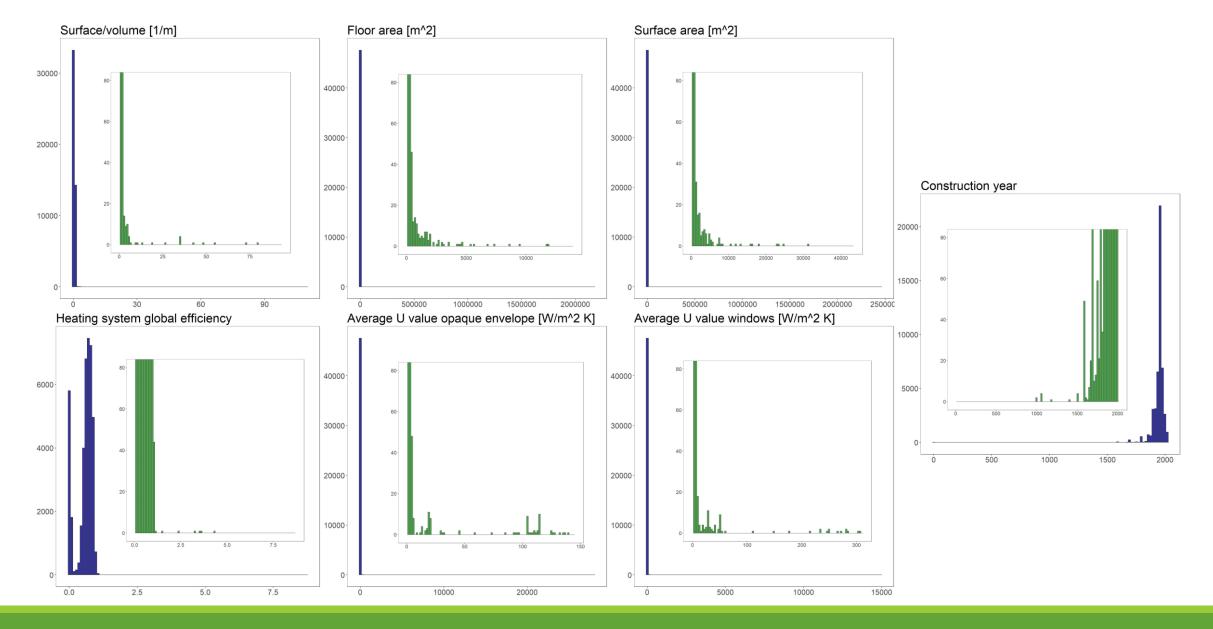


Top 15 ZIP code in Turin

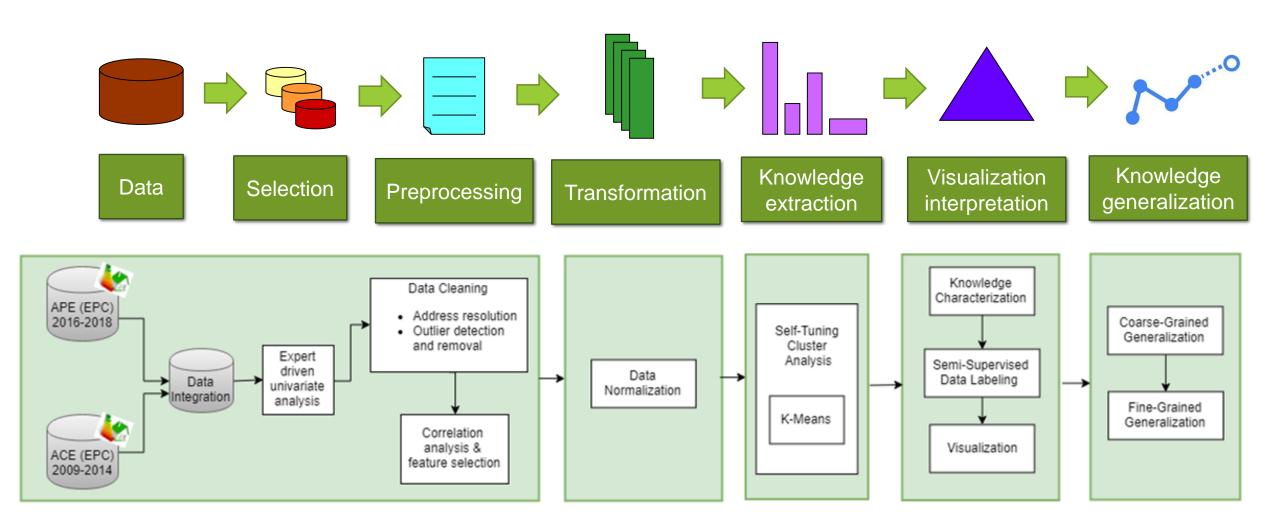


EPC# Normalized with respect to ZIP codes (only to 15 ZIP code)

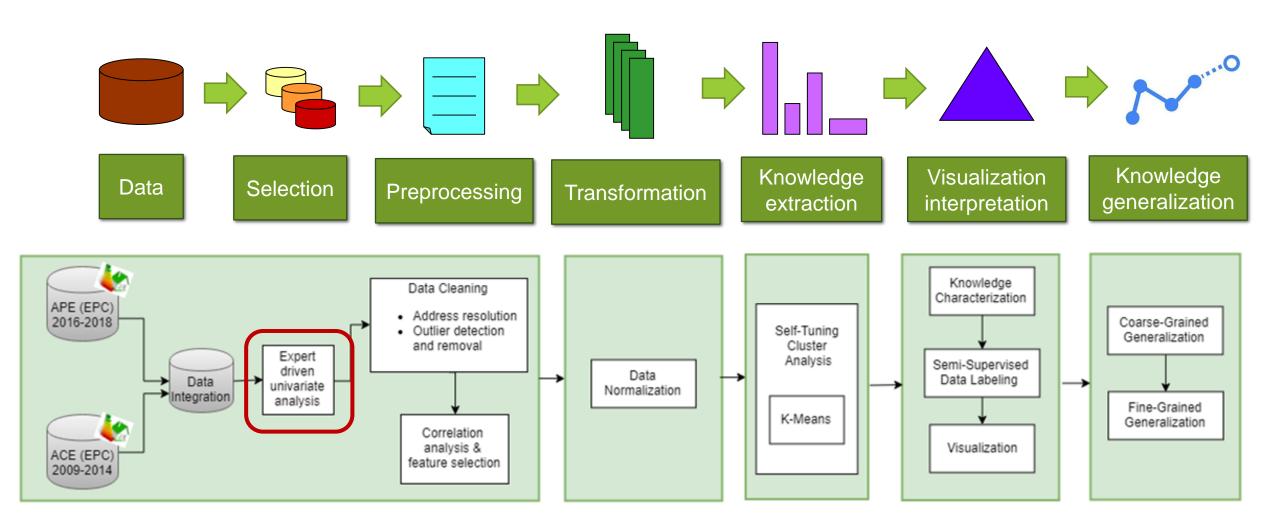
Data characterization: EPCs in Turin



Knowledge extraction process from EPCs



Knowledge extraction process from EPCs



Expert-driven univariate analysis

E1 (1) buildings used as permanent residence.

Identification of the most important variables

- Normalized Primary heating energy consumption
- Aspect Ratio
- Surface area
- Floor area
- Average U-value of the vertical opaque envelope
- Average U-value of the windows
- Heating system global efficiency
- Construction year

Expert-driven univariate analysis

E1 (1) dwellings used as permanent residence.

Identification of the most important variables

- Normalized Primary heating energy consumption
- Aspect Ratio
- Surface area
- Floor area
- Average U-value of the vertical opaque envelope
- Average U-value of the windows
- Heating system global efficiency
- Construction year

Semi-supervised outlier detection

Identification of the

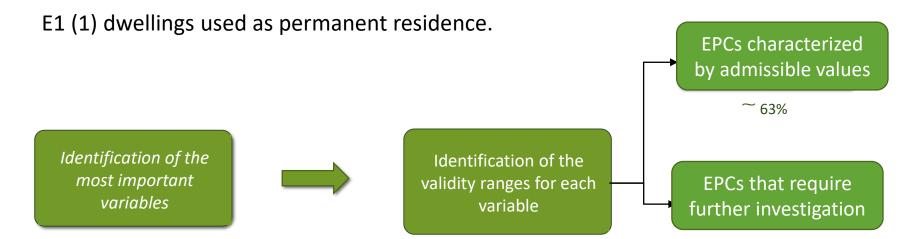
validity ranges for each

variable

- Definition of acceptability ranges
- Univariate outlier detection based on gESD method needs as input parameter the upper-bound of potential outliers
- Analysis of data distribution through Boxplot: visualization of a data distribution through its quartiles

Units	min	max		
$[KWh/m^2]$	0	682		
$[m^{-1}]$	0.1	2		
$[m^2]$	24.9	880		
$[m^2]$	21.5	296		
the of the vertical opaque envelope $[W/m^2K]$				
	0.15	3		
$[W/m^2K]$	0.9	7		
-	0.3	1.06		
-	1700	2018		
	$\frac{[KWh/m^2]}{[m^{-1}]} \\ [m^2]$	$\begin{array}{c c} [KWh/m^2] & 0 \\ \hline [m^{-1}] & 0.1 \\ \hline [m^2] & 24.9 \\ \hline [m^2] & 21.5 \\ \hline [W/m^2K] & 0.15 \\ \hline [W/m^2K] & 0.9 \\ \hline - & 0.3 \end{array}$		

Expert-driven univariate analysis

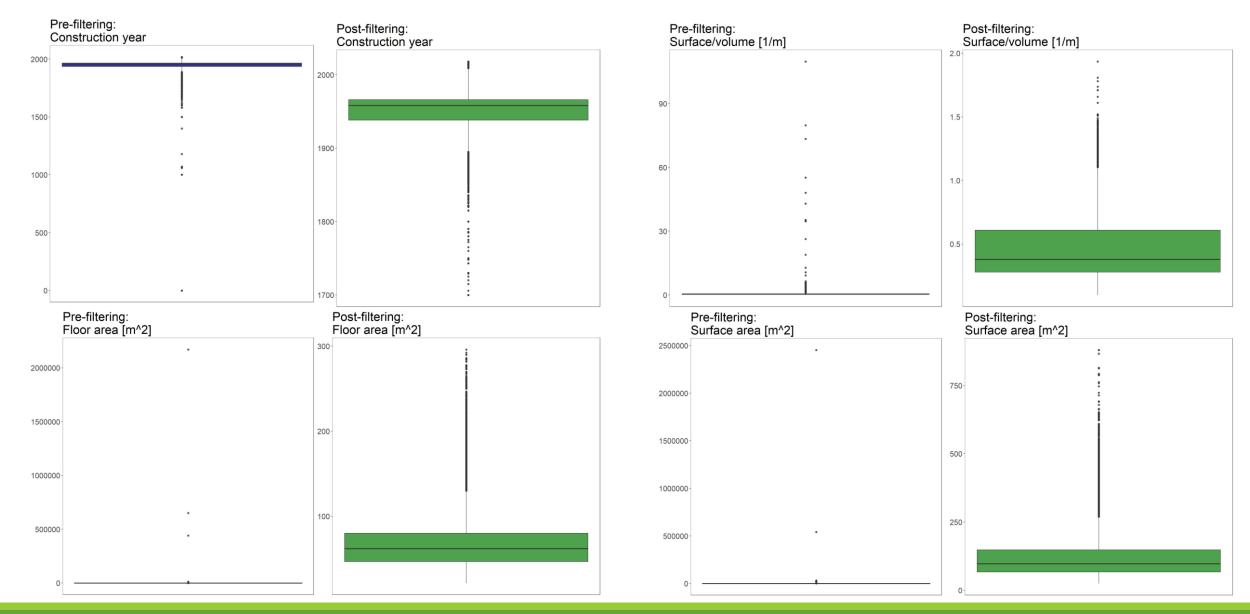


- Normalized Primary heating energy consumption
- Aspect Ratio
- Surface area
- Floor area
- Average U-value of the vertical opaque envelope
- Average U-value of the windows
- Heating system global efficiency
- Construction year

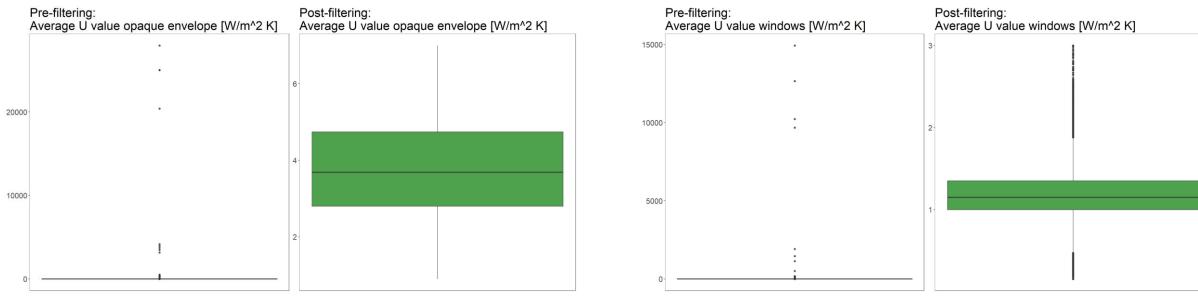
Semi-supervised outlier detection

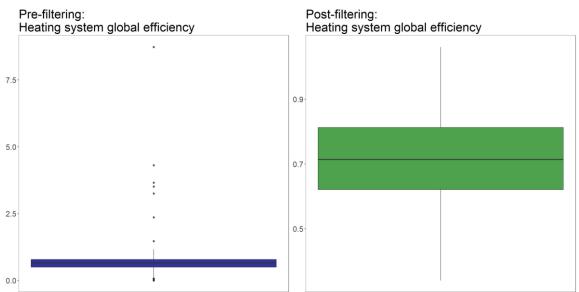
- Definition of acceptability ranges
- Univariate outlier detection based on gESD method needs as input parameter the upper-bound of potential outliers
- Analysis of data distribution through Boxplot: visualization of a data distribution through its quartiles

Effects of the acceptability ranges

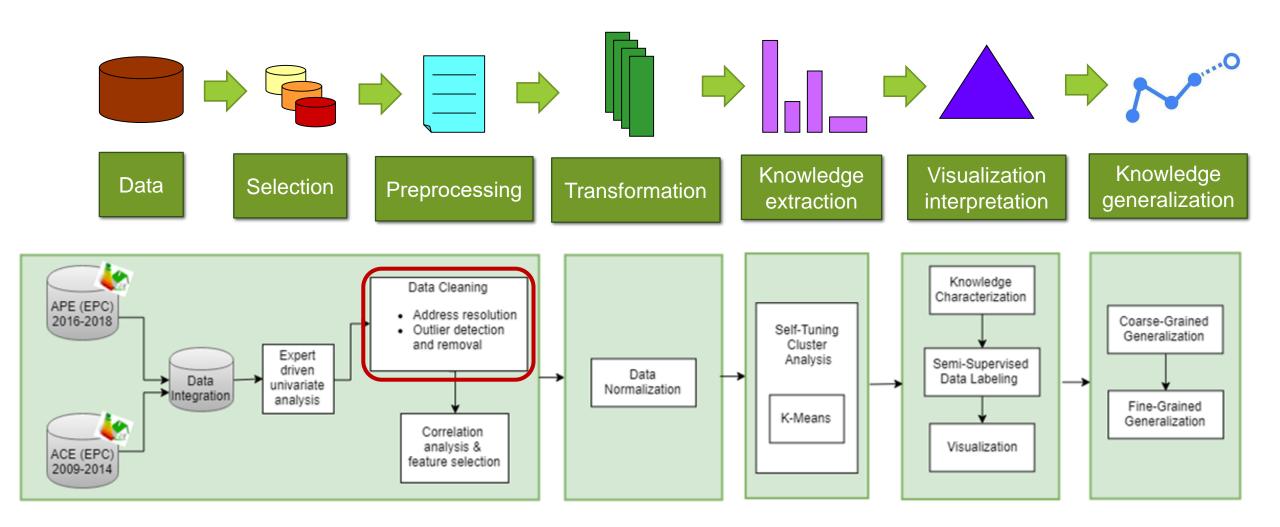


Effects of the acceptability ranges





Preprocessing-Correlation Analysis



Data cleaning: address resolution

EPCs with invalid address format

- Typing errors
- Incorrectly-coded characters
- 31.6% of the addresses have a generic 10100 CAP
- Wrong longitude and longitude coordinates

Adopted solution

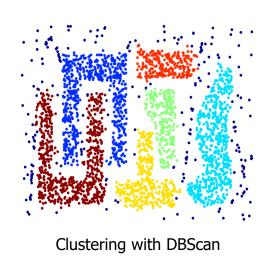
- Addresses in the DB have been compared to those stored in the Turin road list (from Geoportale Comune di Torino¹)
- **Levenshtein** distance to compute the similarity index between the addresses reported in the APE DB and the reference DB.
 - If the address has been **resolved**, the CAP and the coordinates are saved in our DB eliminating inconsistencies
 - If the address has not been resolved, the CAP and coordinates are obtained through the Google² geocoding API
- More than 99% of the addresses have been solved

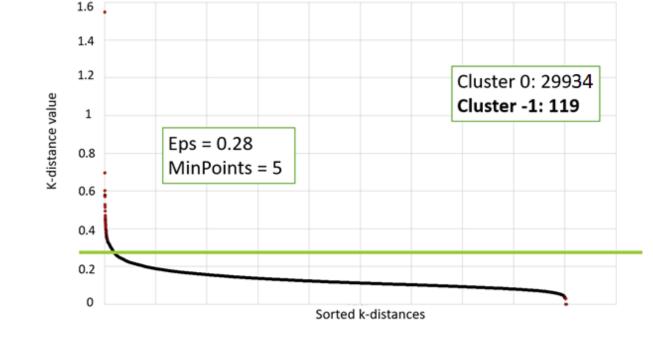
1 https://developers.google.com/maps/documentation/geocoding/intro 2 http://geoportale.comune.torino.it/web/

Outlier detection: multivariate analysis

Density-based clustering algorithm: **DBScan**

- Splits the database in parts characterized by different densities (dense and sparse)
- **Density** is defined by two parameters (i.e., Eps, MinPoints), that are difficult to set
- Self-tuning strategy based on k-distances plot
 - sorted distance of every point to its kth nearest neighbor

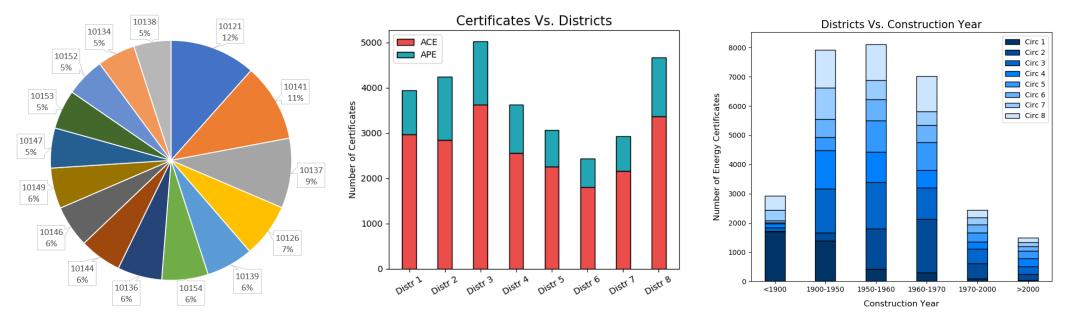


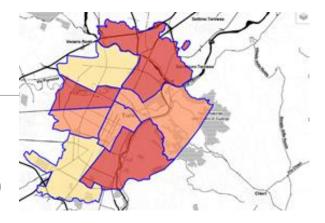


From: Tan, Steinbach, Kumar, *Introduction to Data Mining*, McGraw Hill 2006

Cleaned dataset related to Turin

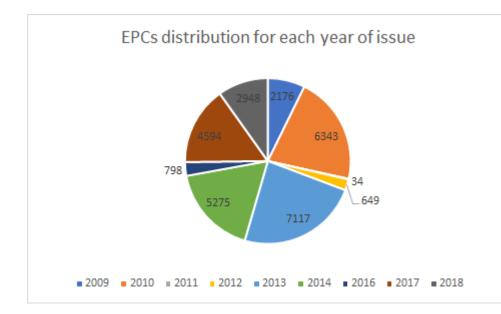
- E1 (1) dwellings in Torino used as permanent residence
- EPCs issued in the period: 2009 2018
- EPCs for particella, foglio e subalterno (identifying each single dwelling)
- Number of selected EPCs: 29,934
- $^\circ\,$ Percentage of EPCs with respect to the total building number in the ISTAT database: 29,934/600,000 $\,\,\sim\,$ 5 $\%\,$

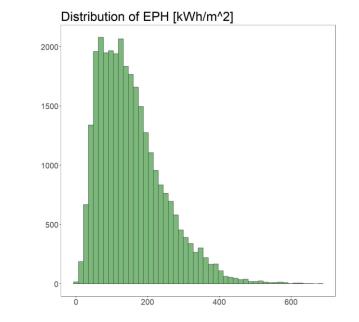


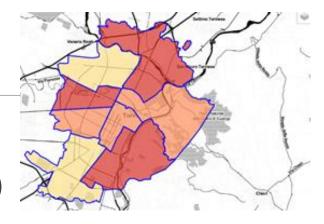


Cleaned dataset related to Turin

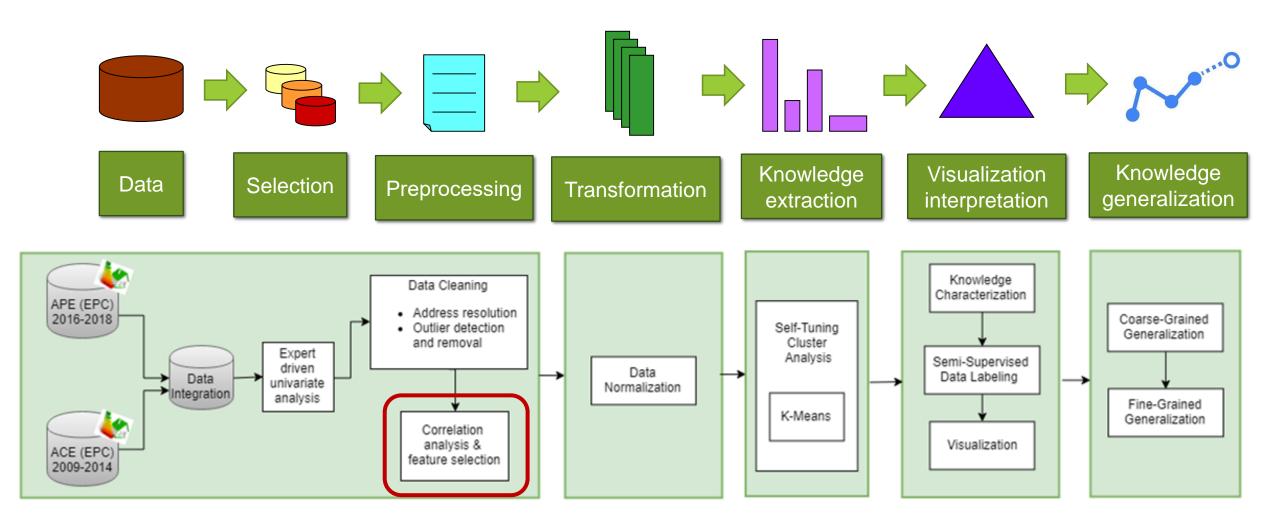
- E1 (1) dwellings in Torino used as permanent residence
- EPCs issued in the period: 2009 2018
- EPCs for particella, foglio e subalterno (identifying each single dwelling)
- Number of selected EPCs: 29,934
- $^\circ\,$ Percentage of EPCs with respect to the total building number in the ISTAT database: 29,934/600,000 $\,\,\sim\,$ 5 %







Preprocessing-Correlation Analysis



Correlation analysis

Data-driven

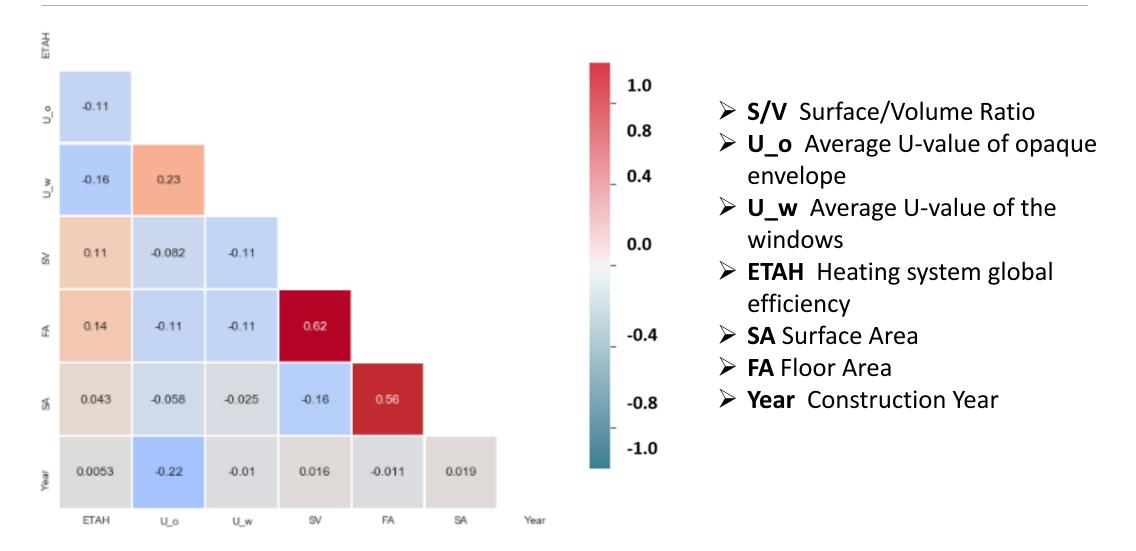
Feature removal (correlation-based approach)

- simplifying the model computation
- improving the model performance

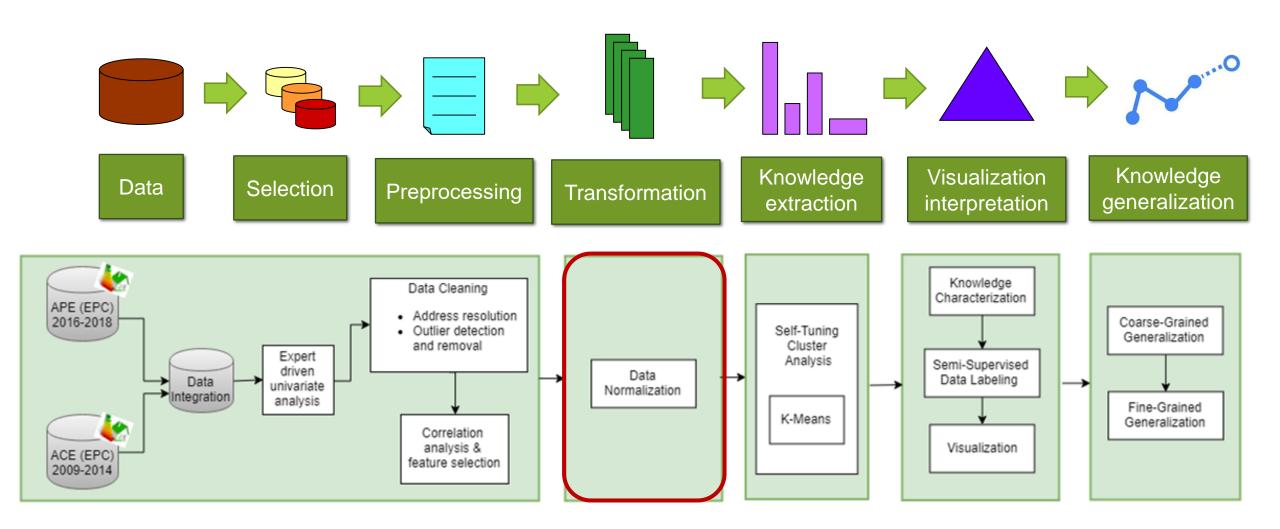
Feature selection based on correlation test

- Features highly-correlated with other attributes could be discarded from the analysis
 - having dependence or association in any statistical relationship, whether causal or not

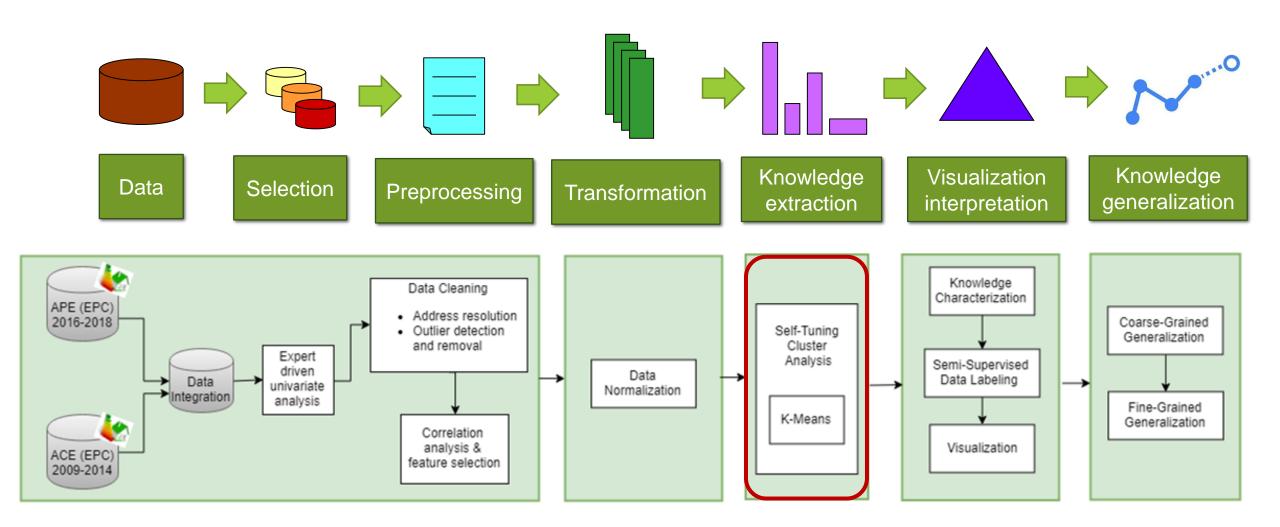
Correlation analysis



Transformation



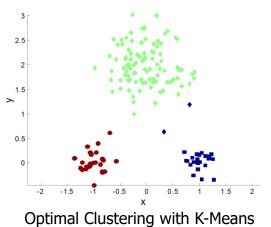
Knowledge extraction process from EPCs



Self-tuning cluster analysis

Clustering algorithms enriched by **self-tuning strategies** (i.e., parameter **autoconfiguration**)

- Partitional algorithm: K-Means
 - Each cluster is represented by a centroid
 - The desired **number of clusters** is identified by the user

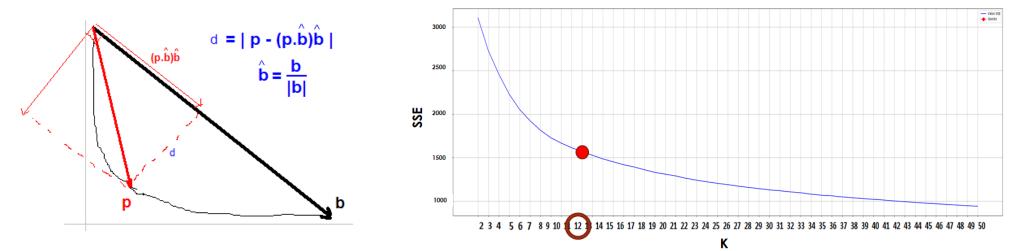


From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Self-tuning cluster analysis:

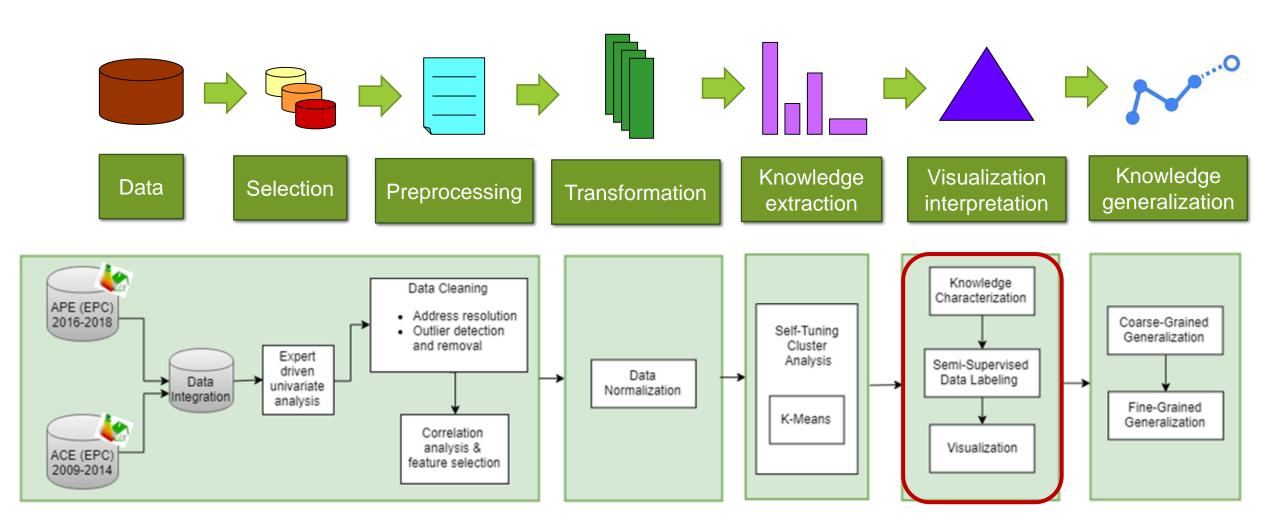
Clustering algorithms enriched by self-tuning strategies (i.e., parameter autoconfiguration)

- Partitional algorithm: K-Means
 - Each cluster is represented by a centroid
 - The desired **number of clusters** is identified by the user
- Self-tuning strategy based on the Elbow plot: quality-measure trend (e.g., SSE) vs K
 - The methodology presented in "Finding a Kneedle in a Haystack: Detecting Knee Points in System Behavior", Ville Satopaa; Jeannie Albrecht; David Irwin; Barath Raghavan has been integrated
 - The gain from adding a centroid is negligible
 - The reduction of the quality measure is not interesting anymore



Ville Satopaa et al; "Finding a Kneedle in a Haystack: Detecting Knee Points in System Behavior", 2011 31st International Conference on Distributed Computing Systems.

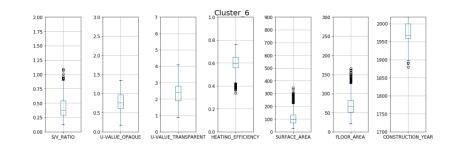
Knowledge extraction process from EPCs

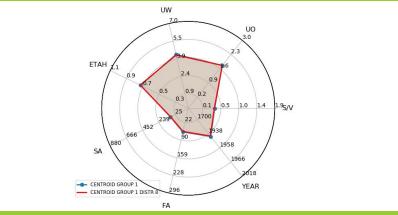


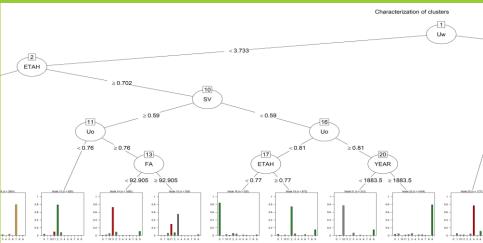
Cluster characterization

Each discovered cluster of EPCs is characterized through:

- Centroids represented through radar plots
- Data distribution for each attribute modeled through boxplot
- Cluster labels, assigned with the support of the domain expert





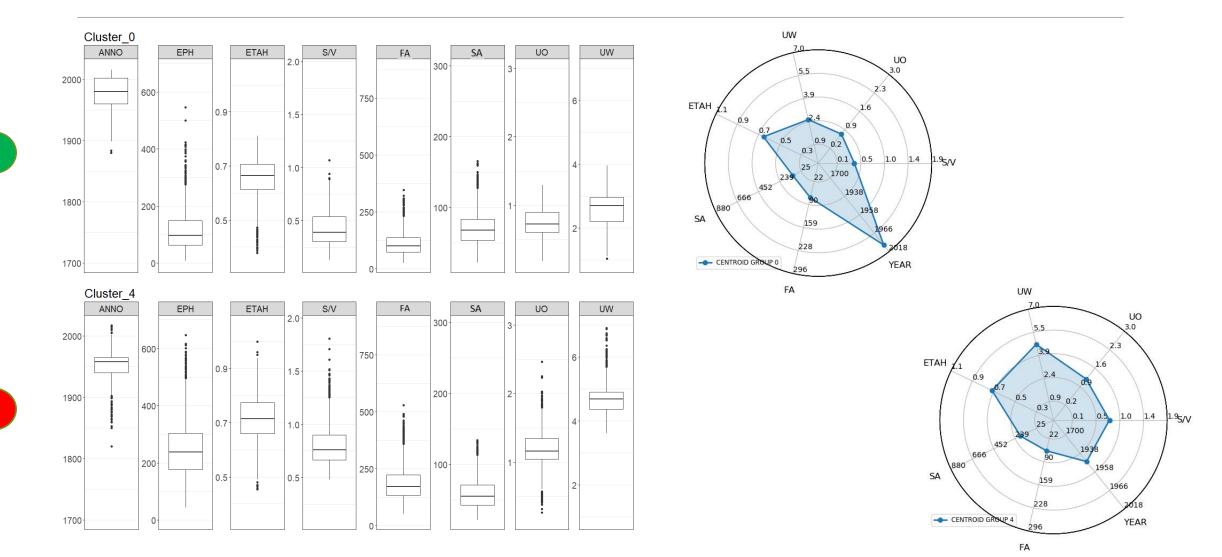


Cluster characterization

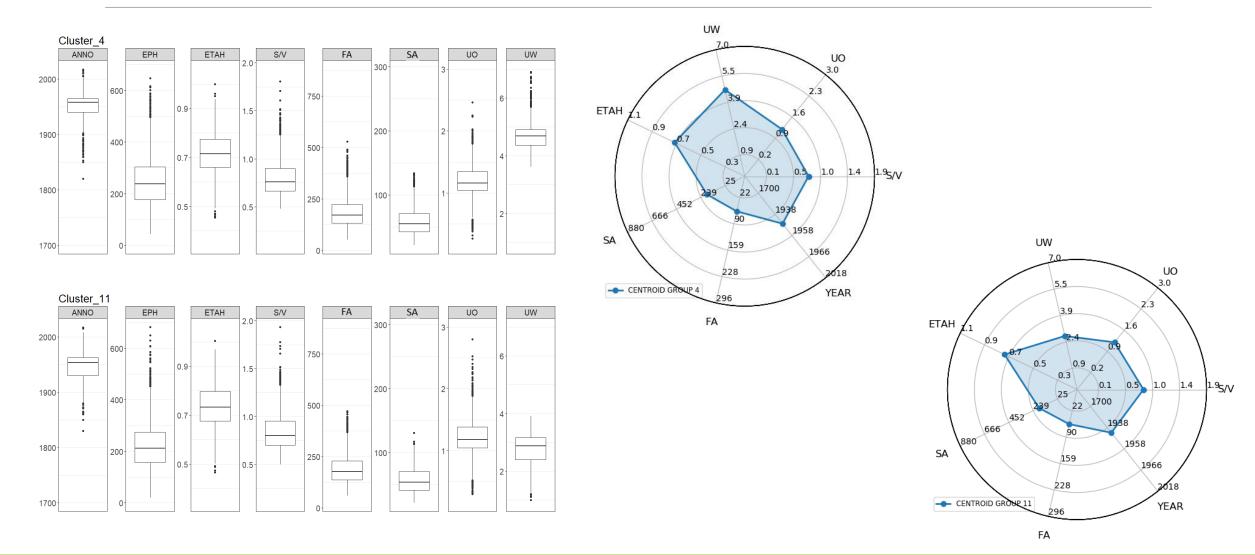
Cluster ID	EPC #
Cluster 0	1,783
Cluster 1	1,810
Cluster 2	1,683
Cluster 3	857
Cluster 4	2,720
Cluster 5	1,450
Cluster 6	4,083
Cluster 7	3,574
Cluster 8	4,916
Cluster 9	3,725
Cluster 10	808
Cluster 11	2,525

		Districts							
		1	2	3	4	5	6	7	8
Cluster	0	101	245	321	217	281	222	172	224
	1	231	289	311	249	131	137	145	317
	2	91	236	264	283	262	111	196	240
	3	251	54	92	79	23	42	109	207
	4	218	395	523	304	306	270	291	413
	5	430	185	234	165	33	37	105	261
Label	6	383	758	688	472	375	297	360	750
	7	419	433	637	480	415	325	351	514
	8	435	738	860	649	587	450	496	701
	9	480	591	643	472	351	274	359	555
	10	643	2	8	14	1	9	53	78
	11	255	321	440	245	300	268	292	404

Clusters of EPCs: High vs Low energy performance

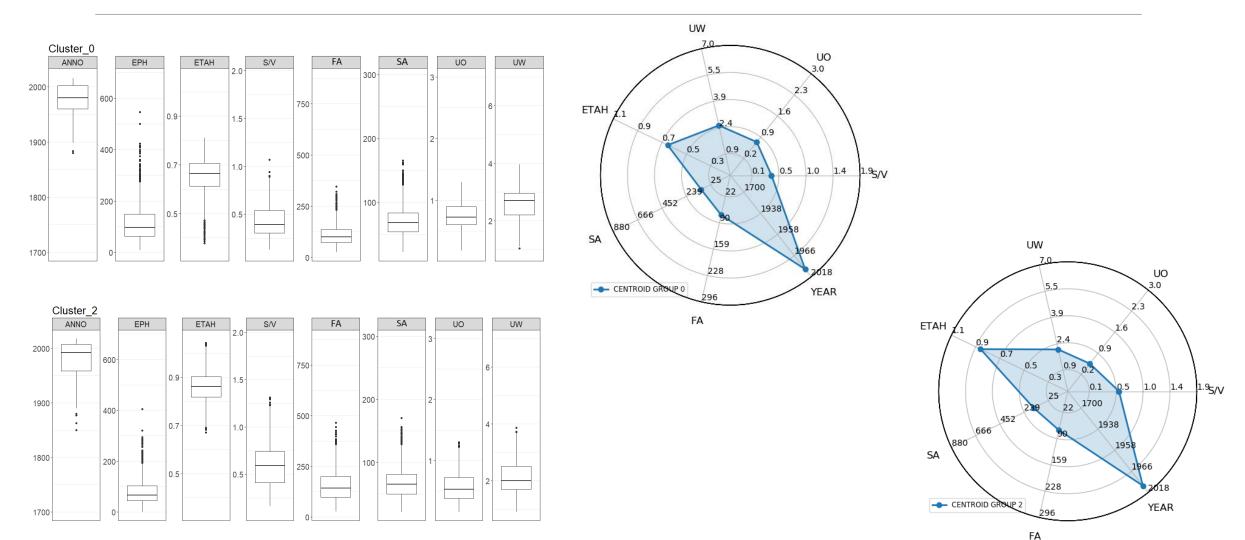


Clusters of EPCs: Low energy performance



38

Clusters of EPCs: High energy performance



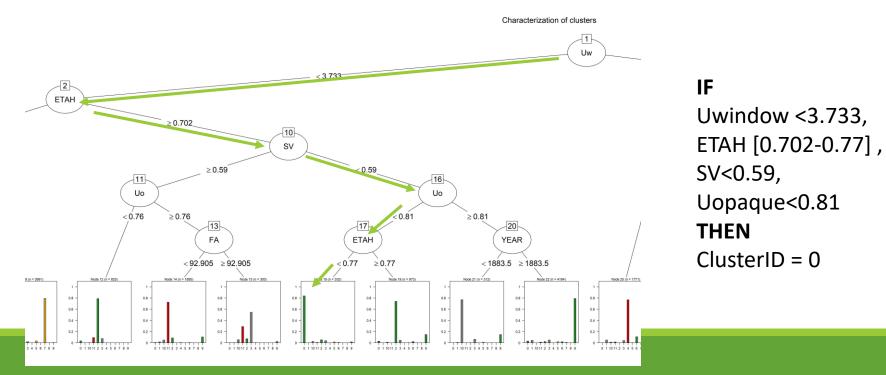
39

Cluster characterization through CART rules

A CART is built by considering all cluster input variables as input and the cluster id as label to be predicted

• **Transparent** self-describing model, directly "readable" by humans

Rules are automatically extracts from CART by visiting its paths, being **directly exploitable** by all stakeholders (including non-experts) and by the domain expert to define the meaning of each group.



Semi-supervised data labeling

ClusterID	Energy Performance Label	olor Description	
0	High	High performing envelope, medium performing energy system	
1	Х	Low performing envelope, low values of SV	
2	High	High performing envelope and energy system	
3	Х	Buildings with large surface area	
4	Low	Low performing envelope, high values of SV	
5	Medium	Low performing envelope, medium performing energy system, low values of SV	
6	High	Low performing envelope, high performing energy system, low values of SV	
7	Medium	High performing envelope, low performing energy system, low values of SV	
8	Medium	Medium performing envelope, low performing energy system, low values of SV	
9	High	Medium performing envelope, medium performing system, low values of SV	
10	Х	Historical buildings	
11	Low	Medium performing envelope, medium performing system, high values of SV	

Knowledge visualization

Maps with different spatial granularity levels

- City
- District
- Neighborhood
- Dwellings

Different types of maps

Choropleth maps

- > An aggregation metric is required
- Majority model
- Statistical functions to be defined with the domain expert

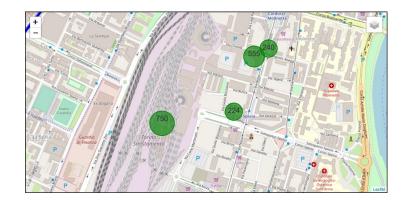
Scatter maps with individual markers

Maps with marker-clusters

Dynamic plots to model aggregated APEs



Turin Certificates Analysis



Web Application

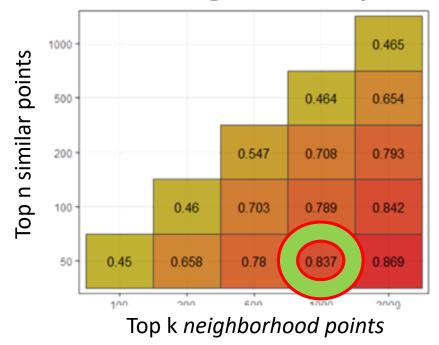
Two step approach to assign to a new dwelling its cluster label, representing its energy performance:

- 1) Identification of the dwelling neighborhood given a maximum number of dwellings
 - A. Given the lat and long of the new dwelling, its closest dwellings are selected
- 2) K-nearest neighborhood
 - A. Among the selected neighbors, the top K similar EPCs [according to the available cluster input variable] are chosen
 - B. The cluster label to be predicted is the most frequent label among the ones selected in 2.A

The above methodology can be exploited when:

- All EPC features (considered in the cluster analysis) are available for the new dwelling
- A subset of features (considered in the cluster analysis) is available for the new dwelling
 - Preliminary tests on geometrical dwelling features
- Only latitude and longitude are available for the new dwelling
 - Only steps 1 and 2.B are carried out

All EPC features (considered in the cluster analysis) are available for the new dwellings



average accuracy

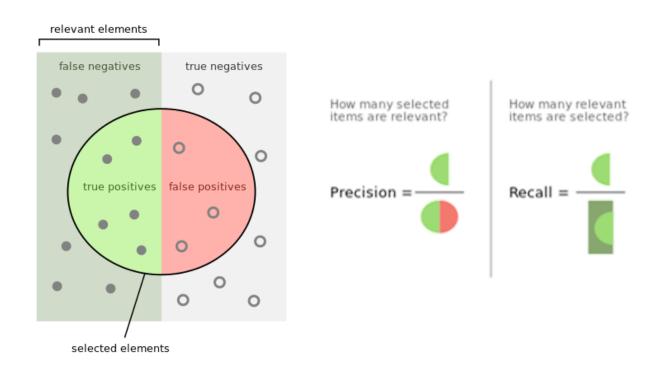
A good **trade-off** is in correspondence of

- number of neighborhood points equals to 1000
- number of similar points equals to 50.

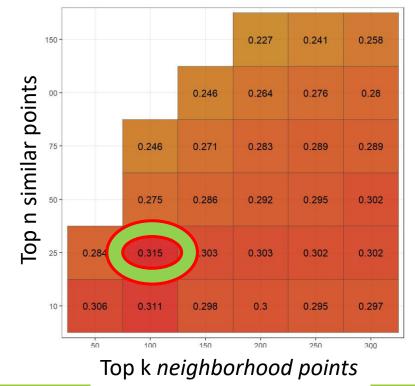
Class	Precision	Recall
0	0.917	0.576
1	0.951	0.480
10	0.963	0.792
11	0.829	0.863
2	0.942	0.662
3	0.962	0.481
4	0.897	0.861
5	0.820	0.580
6	0.839	0.950
7	0.787	0.950
8	0.842	0.989
9	0.765	0.954

Accuracy	Average Precision	Average Recall
0.839	0.876	0.761

For each cluster, two important model evaluation metrics are <i>evaluated.



Only the geometrical EPC features (considered in the cluster analysis) are available for the new dwelling: SV, Floor Area and Surface Area



Average accuracy

A good **trade-off** is in correspondence of

- number of neighborhood points equals to 100
- number of similar points equals to 25.

Precision	Recall
0.292	0.204
0.117	0.051
0.381	0.564
0.397	0.429
0.319	0.261
0.790	0.299
0.358	0.415
0.497	0.467
0.245	0.306
0.247	0.185
0.274	0.413
0.203	0.142
	0.292 0.117 0.381 0.397 0.319 0.790 0.358 0.497 0.245 0.247 0.247

Accuracy	Average Precision	Average Recall
0.299	0.343	0.311

Knowledge generalization: fine grained

Predition of the value of one missing cluster input variable

- 1) A regression model is built on the cleaned dataset by analyzing a subset of cluster input variables
- 2) Different algorithms were integrated:
 - 1) LASSO
 - 2) RIDGE
 - 3) K-NN regressor
 - 4) Polinomyal regressor
 - 5) Support Vector regression
- 3) 10-fold cross validation has been exploited to compute the quality metrics and select the best algorithm

The above methodology can be exploited before applying the coarse-grained generalization approach

Cluster input variables are characterized by a low value of correlations

- Strong point to obtain good quality model by means of the cluster analysis
- Weak point to build an accurate regression model able to predict one of the cluster input variable based on the others

Knowledge generalization: fine grained

Experiment ID	Input Variables	Predicted Variable	Regression model	Quality metric R ²
1	ETA_D, ETA_G, ETA_R, U_o, U_w, FA, SA, Year, SV	ETAH*	Lasso regressor	0.97
2	ETA_E, ETA_G, ETA_R, U_o, U_w, FA, SA, Year, SV	ETAH*	Lasso regressor	0.91
3	U_o, U_w, FA, SA, Year, ETAH	SV	K-NN regressor	0.85

*ETAH. This index considers the efficiency of each subsystem of the dwelling: generation subsystem (ETA_G), distribution subsystem (ETA_D), emission subsystem (ETA_E) and control subsystem (ETA_R)

Experiment ID	# EPCs
1	317
2	405
3	87

Cerquitelli T., Di Corso E., Proto S, Capozzoli A., Bellotti F., Cassese M.G., Baralis E., Mellia M., Casagrande S., Tamburini M., *Exploring Energy Performance Certificates through Visualization*. In Proceedings of the Workshops of the EDBT/ICDT 2019 Joint Conference (EDBT/ICDT 2019) Lisbon, Portugal, March 26, 2019.

Cerquitelli T., Di Corso E., Proto S, Capozzoli A., Mazzarelli D. M., Nasso A., Baralis E., Mellia M., Casagrande S., Tamburini M., *Visualising high-resolution energy maps through the exploratory analysis of energy performance certificates.* Accepted for publication, to be presented at SEST 2019, Porto, Portugal, September 9-11, 2019.

Tania Cerquitelli Creare valore e strutturare conoscenza a partire da open data energetici: metodi, sfidee opportunità.Open Access Week @ POLITO, October 23th, 2018 Turin, Italyhttp://www.politocomunica.polito.it/news/allegato/(idnews)/11788/(ord)/0

Tania Cerquitelli *Visualizing high-resolution exploratory energy maps by analyzing energy-performance certificates* The 4th Workshop of the SmartData@PoliTO Interdepartmental Center will be held on February 28th, 2019 at Politecnico di Torino – AULA MAGNA <u>https://smartdata.polito.it/4th-smartdata-workshop-public/#cerquitelli</u>

Tania Cerquitelli and Alfonso Capozzoli Exploring open data to spread out knowledge: a real-world use case in the energy domai. Focus on Open Access, Università di Torino, May 7th, 2019 Turin, Italy. http://www.politocomunica.polito.it/en/news/allegato/(idnews)/12677/(ord)/0

Tania CERQUITELLI