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Introduction to the regression
analysis

 Objectives
 Prediction of a numerical target variable
 Definition of an interpretable model of a given 

phenomenon
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Introduction to the regression
analysis

 Approach discussed in 
this set of slides
 Linear regression
 SVMs (SVR)
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 Other approaches
 k-Nearest Neighbours
 Decision trees
 ..

model

training data

new data
new data with 

predictions 



Introduction to the regression
analysis
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 Requirements
 accuracy
 interpretability
 scalability
 noise and outlier management



Introduction to the regression
analysis
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 Applications
 Estimating the cost of a house
 Estimating the remaining useful life (RUL) of an industrial equipment
 Industrial Vehicle Usage Predictions
 Predicting the Number of Free Floating Car Sharing Vehicles within 

Urban Areas
 … 



Introduction to regression

 The term "regression" was coined by Francis 
Galton in 1877 to describe a biological phenomenon 
 the heights of descendants of tall ancestors tend to 

regress down towards a normal average (i.e, regression 
toward the mean)

 Father of regression Carl F. Gauss (1777-1855)
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Definition

 Given
 A numerical target attribute
 A collection of data objects also characterized by the 

target attribute

 The regression task finds a model that allows
predicting the target variable value of new objects
through
 y=f (x1, x2, … xn)
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Regression analysis

 Regression analysis can be classified based on
 Number of explanatory variables

 Simple regression: single explanatory variable
 Multiple regression: includes any number of explanatory

variables
 Types of relationship

 Linear regression: straight-line relationship
 Non-linear: implies curved relationships (e.g., logarithmic

relationships)
 Temporal dimension

 Cross Sectional: data gathered from the same time period
 Time Series: involves data observed over equally spaced 

points in time
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Simple linear regression

 The regression line provides an interpretable
model of the phenomenon under analysis
 y: estimated (or predicted) value
 β0 : estimation of the regression intercept

 The intercept represents the estimated value of y
when x assumes 0

 β1 : estimation of the regression slope
 x: independent variable

9

y= β0+ β1 x



Simple linear regression

 Least squares method
 β0 and β1 can be obtained by minimizing the Residual

sum of squares (RSS) that is the sum of the squared
residuals
 differences between actual values ( ) and estimated ones ( )
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Estimation of the parameters by 
least squares
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 where and            are the sample 
means



Simple linear regression: 
example
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Size in feet2 Price ($) in 1000's

2104
1416
1534
852
…

460
232
315
178
…

 Goal of a real estate 
agency
 Estimate the selling price of 

a home based on the value 
of size in square feet

 Simple linear regression 
finds a linear model of the 
problem
 x = Size in feet2 

 y = Price ($) in 1000’s

y= β0+ β1 x
samples



Simple linear regression: example
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 β0: The intercept represents the 
estimated value of y when x 
assumes 0

 No house had 0 square feet, but
β0 is the portion of house price 
not explained by square feet

 β1: the slope measures the 
estimated change in the y value
as for every one-unit change in x
 The average value of a square

foot of size

samples



Multiple linear regression

 Dependant variable (y): the single variable being
explained/predicted by the regression model

 Independent or explanatory variables (xi): The variables
used to predict/explain the dependant variable

 Coefficients (βi): values, computed by the regression task, 
reflecting explanatory to dependent variable relationships

 Residuals (ξ): the portion of the dependent variable that is
not explained by the model 
 The model performs under or over predictions
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y= f(x) = β0+ β1 x1+ β2 x2+ β3 x3 + … + βn xn + ξ



Interpretating regression
coefficients

 Uncorrelated predictors
 Each coefficient can be estimated and tested separately
 Interpretation: a unit change in xi is associated with a βi

change in y, white all the other variables stay fixed
 βi represents the average effect on y of a one unit increase in xi, holding all other predictors fixed

 Correlation among predictors cause problems
 The variance of all coefficients tends to increase, sometimes 

dramatically
 Interpretations become complex: when xj changes, everything 

else changes

 The claim of causality should be avoided for the 
observational data
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Feature selection

 In case of a high dimensional data set, in terms of number of 
dependent variables, some of the variables might provide 
redundant information. 

 Feature selection and removal (correlation-based approach)
 simplifying the model computation
 improving the model performance
 Enhancing the model interpretation (i.e., better explainability of the 

dependent variables)

 Variable/feature selection
 Driven by the business understanding and domain knowledge
 Feature selection based on correlation test

 Features highly-correlated with other attributes could be discarded from the 
analysis

 having dependence or association in any statistical relationship, whether 
causal or not 16



Polynomial regression

 The polynomial models can be used in those situations where the 
relationship between dependent and explanatory variables is curvilinear. 

 Polynomial regression consists of:
 Computing new features that are power functions of the input features
 Applying linear regression on these new features
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 The above models are also linear (i.e., A model is linear when it is linear in 
parameters)

 They are the second order polynomials in one and two variables respectively.
 Sometimes a nonlinear relationship in a small range of explanatory variables 

can also be modeled by polynomials.
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Polynomial model in one variable

 The kth order polynomial model in one variable is given by

 It is included in the linear regression model below

 Techniques for fitting linear model can be used for fitting the 
polynomial regression model

 For example, 
 Is a polynomial regression model in one variable and is called as 

second order model or quadratic model, where the coefficients
 ଵ s the linear effect parameter
 ଶ is the quadratic effect parameter

 The polynomial models can be used to approximate a 
complex nonlinear relationship
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Polynomial regression: 
considerations in case of one 
variable
 Order of the model

 Keep the order of the polynomial model as low as possible
 Up to the second order polynomial
 If necessary, you should apply some data transformations

 Arbitrary fitting of higher order polynomials can be a serious abuse of 
regression analysis. 
 Data overfitting issue

 Different model building strategies do not necessarily lead to the 
same model
 Forward selection procedure: to successively fit the models in 

increasing order and test the significance of regression coefficients at 
each step of model fitting. 
 Keep the order increasing until t-test for the highest order term is nonsignificant
 The significance of highest order term is tested through the null hypothesis

 Backward elimination: to fit the appropriate highest order model and 
then delete terms one at a time starting with highest order. This is 
continued until the highest order remaining term has a significant t-test

 The first and second order polynomials are mostly used in practice.
19



Polynomial models in two or more 
variables

 The techniques of fitting of polynomial model in one 
variable can be extended to fitting of polynomial models 
in two or more variables.

 A second order polynomial is more used in practice and 
its model is specified by

 This is also called response surface. 
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Strong and weak points of 
Polynomial Regression

 Advantages of using Polynomial Regression:
 Broad range of function can be fit under it.
 Polynomial basically fits wide range of curvature.
 Polynomial usually provides the best approximation of the relationship 

between dependent and independent variable.
 Disadvantages of using Polynomial Regression

 They are too sensitive to the outliers.
 The presence of a few outliers in the data can seriously affect the results of a 

nonlinear analysis.
 Higher polynomial degree means higher flexibility of your model, but also 

data overfitting
 Overfitting occurs in those cases when you have few a samples and a model that 

has high flexibility
 It is always possible for a polynomial of order (n-1) to pass through n points so 

that a polynomial of sufficiently high degree can always be found that provides a 
“good” fit to the data. 

 Those models never enhance the understanding of the unknown function and 
they are never good predictors.
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To avoid data overfitting 

 Use more training data (if possible)
 Use lower model complexity
 Use regularization techniques 

 e.g., Ridge and Lasso
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RIDGE and LASSO

 Regression analysis methods that perform both variable selection 
and regularization in order to enhance the prediction accuracy
and interpretability of the statistical model it produces.

 Useful to reduce model complexity and prevent overfitting when
 The number of variables describing each observation exceeds the 

number of observations
 The number of variables does not exceed the number of observations, 

but the learned model suffers from poor generalization. 
 Techniques of training a linear regression (or a linear regression 

with polynomial features)
 They try to assign values closer to zero (RIDGE) or zero (LASSO) to 

the coefficients assigned to features that are not useful for the 
regression

 The effect is the decreasing of the complexity of the model
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LASSO

 LASSO means Least Absolute Shrinkage and Selection Operator
 Term coined by Robert Tibshirani in 1996, but it was originally 

introduced in geophysics literature 10 years before
 Lasso regularization was originally defined for least squares, but it 

is easily extended to a wide variety of statistical models in a 
straightforward fashion
 E.g., generalized linear models

 The Lasso’s variable selection relies on the form of the constraint
 It forces the sum of the absolute value of the regression coefficients to be 

less than a fixed constraint, which forces some coefficients to be set to 
zero

 The selected model is simpler since it does not include coefficients set to 
zero. 

 It is similar to RIDGE regression but usually identifier a simpler model
 RIDGE simplifies the model by shrinking the size of some coefficients, 

while LASSO sets some coefficients to zero.
24



Support Vector Machine -
Regression

 Find a function, f(x), that performs a prediction of 
the target attribute y with a maximum error equal 
to ε
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Support Vector Regression: 
linear model
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 The (training) problem can be formulated as a convex 
optimization problem

s.t. yi    b   ;
  b  yi  

yi = value of the target attribute of the ith training object
𝑖 
= value of the predictive attributes of the ith training object
and b = parameter of the regression model

1
2

min || ||2



Support Vector Regression: 
Soft margin

 Given a specific value of  , the problem is not 
always feasible

 Soft margin
 Reformulate the problem by considering the errors 

related to the predictions that do not satisfy the 
maximum distance  
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Support Vector Regression: 
Soft margin
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Support Vector Regression: 
Soft margin
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 The (training) problem can be formulated as a convex 
optimization problem

ii
i1
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m

1 || ||2  C min

s.t. yi    b    i;
  b  yi    i

i, i   0, i  1,..., m

*

*



How about a non-linear case?

30



Linear versus Non-linear SVR
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 Map the original features into a higher order 
dimensional space

 Apply a kernel transformation
 Polynomial
 Gaussian radial
 …

 Transform the input data by means of the kernel 
function φ and then solve the previous problem



Linear versus Non-linear SVR

32

 φ maps the input data into a new dimensional space

ii
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s.t. yi  φ )  b    i;
φ )  b  yi    i
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Evaluating regression

 Evaluation metrics for regression:
 MAE (Mean Absolute Error)
 MSE (Mean Squared Error)
 RSE: Residual Standard Error
 R2

 Adjusted R2

 The evaluation is performed by comparing
 : the actual value (ground truth)
 : the predicted value through the regression model
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Evaluating regression

 MAE (Mean Absolute Error)
 the average vertical distance between each real value and the predicted 

one

 MSE (Mean Squared Error)
 the average of the squares of the errors
 the average squared difference between the estimated values and the 

actual value.
 MSE tends to penalize less errors close to 0

 MAE and MSE always > 0 
 The lower the values of MAE and MSE the better the model
 It is mainly affected by the domains of data sample
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Evaluating regression

 Overall accuracy of the model
 RSE: Residual Standard Error

 n is the number of samples
 RSS is the residual sum of squares

 RSE is always greater than 0
 The lower the RSE value the better the regression model
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Evaluating regression

 R2: R-squared measures the goodness of fit of a 
model 
 how well the regression predictions approximate the real 

data points.
 It estimates a normalized error 

 RSS is the residual sum of squares

 TSS is the total sum of squares 
with 
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Evaluating regression: R2

 R2 represents the proportion of variance of y explained 
by variation in x
 FVU means the fraction of variance unexplained

 Ratio between the unexplained variance (variance of the model's 
errors) and the total variance
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Evaluating regression: R2

 R2 value
 R2 = 1

 A perfect linear relationship between x and y
 100% of the Y variation is explained by variation in x

 R2 close to 1
 A very good linear relationship between x and y
 Good predictions

 0 < R2 << 1 
 Weaker linear relationship between x and y
 A portion of the variation in y is not explained by variation in x

 R2 = 0 
 No linear relationship between x and y
 The value of y does not depend on the value of x
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Evaluating regression: R2 adjusted

 Drawback of R2

 In the context of multiple linear regression, if new predictors (Xi) are added to the 
model, R2 only increases or remains constant but it never decreases. 

 However, it is not always true that by increasing the complexity of regression 
model, the latter will be more accurate

 The Adjusted R-Squared is the modified form of R-Squared that has been 
adjusted to incorporate model’s degree of freedom. 

 It should be used to evaluate the quality of a multiple linear regression model 

ଶ ଶ ௡ିଵ
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 p = number of explanatory variables
 n = number of samples

 The adjusted R-Squared only increases if the new term improves the model 
accuracy.
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