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KDD from Industrial data: two key roles

• Support the data pre-processing 

phase

• Assess extracted knowledge

• Strong involvement in the algorithm 

definition phase which should 

respect/include physical laws and 

correctly model physical events

• Design innovative and efficient 

algorithms

• Select the optimal techniques to 

address the challenges of the 

analysis

• Identify the best trade-off 

between knowledge quality and 

execution time

DATA SCIENTIST DOMAIN EXPERT

6



Data Base and Data Mining Group of Politecnico di Torino

DB
MG

▪ Intelligent techniques to identify symptoms of 
imminent machine failure before their actual
occurrence

• It combines physical models of complex devices 
(machines, robots, conveyors, etc.) together with 
data-driven algorithms to effectively support 
smart predictive diagnostics (prognostics)

▪ It anticipates failures and estimates the Remaining
Useful Lifetime (RUL)

• It exploits innovative analytics methods to forecast 
the future evolution of machine degradation

▪ On-line data collected in the factory characterize
the current dynamics of the process/machine from 
the

Predictive maintenance in Industry 4.0

▪ Some of the most common needs of 

manufacturing enterprises

• compatibility with both the on-premises 

and the in-the-cloud environments

• exploitation of reliable and largely 

supported Big Data platforms

• easy deployment through containerized 

software modules

• virtually unlimited horizontal scalability

• fault-tolerant self-reconfiguration
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Main issues

▪ Tailoring the KDD process to predictive maintenance requires a lot of expertise

▪ Identifying the best data preprocessing approach is very challenging

• Summarize long time-dependent series through ad-doc statistics capturing the main key features 

for the prediction

• Use-case dependent

▪ A variety of state-of-the-art algorithms is available

• Data driven methodologies possibly enriched with physical models

▪ Each algorithm is characterized by many different input-parameters
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Knowledge extraction process: Innovations

Data Selection Preprocessing Transformation
Knowledge 

extraction

Visualization

Interpretation

Innovations in the data analytics process

• Tailor the analytic steps to the different key aspects of industrial data

• Design ad-hoc data transformation strategies to capture different facets of 

data

• Self-tuning strategies to offload the data scientist from algorithm 

configuration

• Design informative dashboards to support the translation of the extracted 

knowledge into effective actions
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Knowledge extraction algorithms

Data Selection Preprocessing Transformation
Knowledge 

extraction

Visualization

Interpretation
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 In the preprocessing step

 A time series alignment technique might be required

 e.g., padding technique

 In case of multivariate problem, correlated time series should be identified 
and removed

 Correlation-based approach

 Domain-driven knowledge

 Mixed approach

 Transformation

 Feature engineering
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 Predictive algorithms

 Classification task to classify production cycles

 Regression task to estimate RUL (Remain Useful Life)

 Clustering algorithms

 Data labeling to support predictive analytics

 Concept drift detection

 Anomaly detection techniques
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Knowledge visualization and interpretation

Data Selection Preprocessing Transformation
Knowledge 

extraction

Visualization

Interpretation
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Interpretation of models and results

• Identification of algorithms and 

methodologies for semantic transparency of 

Machine Learning models

• Explanation methods for explaining 

individual predictions of black box models

Informative dashboard

• Visualization methodologies
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methodologies for 

predictive

maintenance



▪ The identification of machine failures before their actual occurrence.

• It may combines physical models of complex devices together with innovative analytics methods

• to forecast the future evolution of machine degradation from current on-line data collected in factories

▪ Two real industrial cases

• Degradation over time of the belt tensioning in a robot (Robotics use case)

• Alarm prediction in slowly-degrading multi-cycle industrial processes (White goods use case)

Predictive maintenance

Versatile plug-and-play platform enabling remote 

predictive maintenance
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▪ The tensioning of the belt is necessary to assure the correct functioning of the robot

• Low tension causes slippage, overheating and premature wear of the belt and pulley.

• Too much tension leads to excessive strain on belts, bearings and shafts.

▪ There is a wide range of tensions that guaranties a good functioning

▪ The loss of tension occurs on all the belts

• Loss of tension goes from 50% to 70% wrt the original tension.

▪ Use case

• The tensioning of the belt is measured by the number of washers used to tension it.

• The effect of different belt tensions can be extracted from the current (Ampere)

• KDD objective: to predict the number of washers cycle by cycle.

Robotics use case: Belt tensioning
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▪ Foaming process, a slowly-degrading industrial process

• During each production cycle, a nozzle is used to inject an isolating foam composed of two reacting 

chemicals 

• Several sensors measure different properties of the foaming process

▪ Temperature of the chemicals involved

▪ Pressure of the liquids before the injection

▪ Injection timing and quantity, ratio of the injected chemicals, etc. 

▪ Production data gathered from industrial foaming machines

• KDD Objective: to monitor and predict the degradation of the equipment, and so promptly trigger the 

maintenance interventions. 

• Degradation of the equipment measured in terms of alarm conditions

• A high number of alarms would bring to machine faults and production interruptions. 

White goods use case: a foaming process 
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A self-tuning pipeline for Pred. Maintenance
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Data preprocessing

 Outlier and noise detection

 Outliers: extreme observations which deviates too much 

from other observations (e.g., the overall pattern of the 

data collection).

 Noise: statistical noise is unexplained variability within a 

data sample. In this context, noise identifies unwanted 

background values that affect the signals and generally 

lower the quality of the data.

 Signal alignment

 Adjusting data observations such that all the points in the 

collection have the same shape may be required by the 

algorithms exploited in the analytics process.
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Smart data computation

 The core component of the data analytics 
workflow

 Computation of the most relevant features that 
well describe and represent the datasets under 
analysis

 a data-driven methodology to extract key features has been 
proposed

 Domain knowledge can also guide the features extraction 
process.

 Three main phases:

 Features computation

 Time domain feature extraction

 Frequency domain feature extraction

 Features selection
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Smart data computation

 Time domain feature computation

 Signals are divided in splits, to better 

capture the signals variability

 Features capturing the signal characteristics 

and variability in the time domain are 

computed in each split separately.

 Mean, Standard deviation, 

 Minimum and Maximum values,

 Kurtosis and Skewness, 

 RMS, sum of absolute values, # of elements 

over the mean, absolute energy, mean 

absolute change, etc.



Data Base and Data Mining Group of Politecnico di Torino

DB
MG

21

Smart data computation

 Frequency domain feature computation 

(work-in progress)

 The time series are described as a sum of sinusoidal 

components (harmonics), e.g., using the Fourier 

Transform.

 The most significant frequencies are kept into 

account for the analysis.

 The computed features can be directly used to 

train/test a predictive model, or a further 

transformation step may be required.
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Smart data computation: Feature selection

 Removing correlated features, beside 

simplifying the model computation, can 

improve the model performance

 Multicollinearity

 Variables that can be predicted from the others with a 

substantial degree of accuracy using a multiple 

regression model could be discarded from the analysis.

 Correlation Test

 Features highly correlated with other attributes (i.e., 

having dependence or association in any statistical 

relationship, whether causal or not) could be discarded 

from the analysis.
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Data aggregation

 Depending on the data under analysis, a 

data aggregation phase could be needed

 Prediction may not target a single 

production cycle, but a longer time 

horizon

 Slowly-degrading multi-cycle industrial 

processes 

 This step reduces the data dimension 

 by aggregating smart data over time and 

computing different sets of features to 

describe the behavior of the aggregated smart 

data
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Predictive analytics

 Model building

 This step requires a set of historical labelled training 

data.

 The model is then tested over a part of the dataset.

 Real Time predictions

 Once created, the model is applied in real time to the new 

signals received from the industrial processes.

 Self-tuning strategy to offload the data scientist to 

manually 

 set the specific algorithm parameters included in the 

proposed approach

 identify the best algorithm to perform the prediction
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Predictive analytics

 Transparent mining (i.e., native interpretable 

models) allow the final user to know why 

prediction outcomes have been taken

 Needed to target specific problems in the 

production processes and trigger precise corrective 

actions.

 Algorithms used in the frameworks are: AdaBoost, 

Gradient Boosted Tree, Random Forest, K-Nearest 

Neighbors

 Black box models: very accurate models

 They do not allow the final user to have a deep 

understanding the causes of the prediction
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Validation

 Several partitioning techniques 

can be exploited to select the 

test set:

 K-Fold Stratified Cross Validation

 the dataset is split in K parts,

each one used as test set alternatively

 TimeSeries Split Validation

 The training set grows at each 

iteration, 

following the time evolution 
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Validation

 The evaluation is performed by 
means on metrics 

 F1-score: harmonic mean 
between Precision and 
Recall

• Precision

• Recall
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Belt tensioning data
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Belt tensioning data



NumWash
ers Number of cycles

% over the 
complete dataset

0 2,392 10.03

1 5,367 22.52

2 6,212 26.06

3 8,707 36.53

4 1,155 4.85

23,833

Number of cycles per class (NumWashers)

Belt tensioning data
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▪ Number of cycles for each day

White goods use case: dataset

▪ # production cycles: 65,986

• Days of analysis: 183

• Start date: 2018-04-16 08:17:22

• End date: 2019-01-30 08:59:47

• Number of signals: 10 signals for each 

production cycle
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White good dataset

▪ Signal 1 distribution

• The orange line represents the variable trends 

over the time axis

▪ Signal 2 distribution

• The orange line represents the variable trends 

over the time axis
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▪ Signal aggregation performed in the time domain

• Aggregating time windows

▪ 4 Hours 

▪ 8 Hours 

▪ 1 Day 

▪ Labels are assigned accordingly to the time windows. 

• Labelling process  requires domain expertise to be correctly carried out.

• All the cycles in the window have been labelled as bringing to a failure if during the window an alarm 

occurred.

Data aggregation and labelling
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Classification and validation
Configuration Classifier Label Precision Recall F1-Score

1d_all RandomForestClassifier 1 0.84 0.85 0.83

1d_all GradientBoostingClassifier 1 0.81 0.81 0.79

1d_all AdaBoostClassifier 1 0.77 0.75 0.74

1d_correlation RandomForestClassifier 1 0.66 0.67 0.65

1d_correlation GradientBoostingClassifier 1 0.63 0.65 0.62

1d_multicollineariry AdaBoostClassifier 1 0.58 0.64 0.59

1d_multicollineariry GradientBoostingClassifier 1 0.62 0.58 0.59

1d_multicollineariry RandomForestClassifier 1 0.58 0.55 0.55

1d_correlation AdaBoostClassifier 1 0.59 0.53 0.52

4H_all RandomForestClassifier 1 0.63 0.35 0.42

4H_all GradientBoostingClassifier 1 0.45 0.32 0.36

8H_all RandomForestClassifier 1 0.51 0.30 0.35

8H_all GradientBoostingClassifier 1 0.47 0.30 0.33

8H_all AdaBoostClassifier 1 0.39 0.30 0.32

4H_all AdaBoostClassifier 1 0.33 0.26 0.29

8H_correlation AdaBoostClassifier 1 0.37 0.26 0.27

8H_multicollineariry AdaBoostClassifier 1 0.33 0.28 0.27

8H_multicollineariry GradientBoostingClassifier 1 0.34 0.25 0.27

8H_correlation GradientBoostingClassifier 1 0.31 0.22 0.23

4H_correlation AdaBoostClassifier 1 0.27 0.22 0.23

4H_correlation GradientBoostingClassifier 1 0.26 0.19 0.21

4H_multicollineariry RandomForestClassifier 1 0.37 0.14 0.20

4H_multicollineariry GradientBoostingClassifier 1 0.28 0.15 0.20

8H_multicollineariry RandomForestClassifier 1 0.30 0.14 0.19

8H_correlation RandomForestClassifier 1 0.26 0.14 0.18

4H_multicollineariry AdaBoostClassifier 1 0.20 0.16 0.18

4H_correlation RandomForestClassifier 1 0.33 0.11 0.17
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Key components
▪ Self-tuning strategy to offload the data scientist from 

• setting the specific algorithm parameters

• selecting the best algorithm

▪ To help the domain expert to easily define the data labelling to production 

cycles/machines in the plants

• The top-k smart data features to focus only on the most relevant features 

• Boxplot distribution for the top-k features 

• Few representative samples for each cluster are manually inspected 

• Most relevant sub-cycles are highlighted
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Concept drift management

 Predictive model performance usually degrades over 
time

 New incoming data can widely differ from the data distribution 
on which the model was trained

 Not all possible classes (labels) are known at training time

 Real time predictions performed on new unseen data may be 
misleading or totally wrong
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Key components

▪ Automatic triggering of the predictive model retraining only when necessary

• Towards real-time evaluation

▪ Unsupervised approach, without the ground-truth labels for the newly classified 

samples

• Different (scalable) quality metrics for drift detection

• e.g., the Silhouette score



▪ It is a quality measure of how similar an object is to its own cluster/group (cohesion) compared to
other clusters/groups (separation).

▪ The silhouette ranges from -1 to +1

• a high value indicates that the object is well matched to its own cluster and poorly matched to
neighbouring cluster.

▪ For each record in the dataset, the silhouette is defined as:

where:

▪ ai is the average distance between i and the other records in the same cluster,

▪ bi is the lowest average distance between the record i and each one of the other clusters (not
containing the record i)

The Silhouette score
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Silhouette score for each cycle before and after the prediction of the unseen data 

Class 1

Class 2

Silhouette for historical data 

for class: 1

Silhouette for historical data + new unseen data

for class: 1

Concept drift detection
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 Fast and general engine for large-scale 
data processing 

 Batch processing

 Streaming processing

 10 to 100 times faster than Hadoop MapReduce

 Advanced Analytics

 Map-Reduce, SparkSQL, MLlib (machine learning)

 Spark Streaming, Spark Graphix (graph support)

 Unified Engine, Spark can run on top of

 Hadoop, Cassandra, Amazon S3

 Mesos, Standalone

 In-memory data sharing

 Good for iterative, interactive and event stream 
processing tasks.

 Active, expanding user community

 Containerization platform

 Microservices architecture deployment

 Faster application development and 
delivery

 It improves modularity

 applications easier to understand

 Container isolation makes application 
portable to any infrastructure

 Open source technology and a modular 
design

 easy to integrate into your existing 
environment
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Open issues

 The automated predictive analytics pipeline is still a dream

 Lack of a general-purpose data-driven methodology

 Different data-analytics solutions might be required to 

correctly address a specific use-case

 Specific aspects in the Industry 4.0 context requires specific 

algorithms

 The data-driven methodologies might be context-dependent
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