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ÁThe amount of data increases every day 
ÁSome numbers (Ḑ 2012): 

ÁData processed by Google every day: 100+ PB 

ÁData processed by Facebook every day: 10+ PB 

ÁTo analyze them, systems that scale with 
respect to the data volume are needed 
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ÁAnalyze 10 billion web pages 
ÁAverage size of a webpage: 20KB 
ÁSize of the collection: 10 billion x 20KBs = 

200TB 
ÁHDD hard disk read bandwidth: 150MB/sec 
ÁTime needed to read all web pages (without 

analyzing them): 2 million seconds = more 
than 15 days 
ÁA single node architecture is not adequate 
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ÁAnalyze 10 billion web pages 
ÁAverage size of a webpage: 20KB 
ÁSize of the collection: 10 billion x 20KBs = 

200TB 
ÁSSD hard disk read bandwidth: 550MB/sec 
ÁTime needed to read all web pages (without 

analyzing them): 2 million seconds = more 
than 4 days 
ÁA single node architecture is not adequate 
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ÁFailures are part of everyday life, especially in 
data center 
ÁA single server stays up for 3 years (~1000 days) 
ǐ10 servers ­ 1 failure every 100 days (~3 months) 

ǐ100 servers  ­ 1 failure every 10 days  

ǐ1000 servers  ­ 1 failure/day 

ÁSources of failures 
ÁHardware/Software 

ÁElectrical, Cooling, ... 

ÁUnavailability of a resource due to overload 
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ÁLALN data [DSN 2006] 
ÁData for  5000 machines, for 9 years 

ÁHardware failures: 60%, Software: 20%, Network 
5% 

ÁDRAM error analysis [Sigmetrics 2009] 
ÁData for 2.5 years 

Á8% of DIMMs affected by errors 
ÁDisk drive failure analysis [FAST 2007] 
ÁUtilization and temperature major causes of 

failures 
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ÁFailure types 

ÁPermanent 

ǐE.g., Broken motherboard 

ÁTransient 

ǐE.g., Unavailability of a resource due to overload 
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ÁNetwork becomes the bottleneck if big amounts 
of data need to be exchanged between 
nodes/servers 
ÁNetwork bandwidth (in a data center): 10Gbps 
ÁMoving 10 TB from one server to another takes more 

than 2 hours  
­ Data should be moved across nodes only when it 
is indispensable 
ÁUsually, codes/programs are small (few MBs)  
­ Move code (programs) and computation  to data  
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ÁNetwork becomes the bottleneck if big amounts 
of data need to be exchanged between 
nodes/servers 
ÁNetwork bandwidth (in a data center): 10Gbps 
ÁMoving 10 TB from one server to another takes more 

than 2 hours  
­ Data should be moved across nodes only when it 
is indispensable 
ÁUsually, codes/programs are small (few MBs)  
­ Move code (programs) and computation  to data 
       

    Data locality   
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ÁSmall data 

ÁData can be completely 
loaded in main memory 
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ÁLarge data 

ÁData can not be completely 
loaded in main memory 

ǐLoad in main memory one chunk 
of data at a time 

ǐProcess it and store some statistics 

ǐCombine statistics to compute 
the final result 

Memory 

Disk 

CPU 
Ȱ#ÌÁÓÓÉÃÁÌȱ ÄÁÔÁ ÍÉÎÉÎÇ 

Server (Single node) 
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ÁCluster of servers (data center) 

ÁComputation is distributed across servers 

ÁData are stored/distributed across servers 

ÁStandard architecture in the Big data context 
(Ḑ 2012) 

ÁCluster of commodity Linux nodes/servers 

ǐ32 GB of main memory per node 

ÁGigabit Ethernet interconnection 
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Server 1 Server .. Server .. Server N 
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ÁCurrent systems must scale to address 

ÁThe increasing amount of data to analyze 

ÁThe increasing number of users to serve 

ÁThe increasing complexity of the problems 

ÁTwo approaches are usually used to address 
scalability issues 

ÁVertical scalability (scale up) 

ÁHorizontal scalability (scale out)  
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ÁVertical scalability (scale up) 

ÁAdd more power/resources (main memory, CPUs) 
to a single node (high-performing server) 

ǐCost of super-computers is not linear with respect to 
their resources 

ÁHorizontal scalability (scale out) 

ÁAdd more nodes (commodity servers) to a system 

ǐThe cost scales approximately linearly with respect to 
the number of added nodes 

ǐBut data center efficiency is a difficult problem to solve 
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ÁFor data-intensive workloads, a large number of 
commodity  servers is preferred over a small 
number of high-performing servers 
ÁAt the same cost, we can deploy a system that 

processes data more efficiently and is more fault-
tolerant 

ÁHorizontal scalability (scale out) is preferred for 
big data applications  
ÁBut distributed computing is hard 
­New systems hiding the complexity of the distributed part of 

the problem to developers are needed 
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ÁDistributed programming is hard 

ÁProblem decomposition and parallelization 

ÁTask synchronization 

ÁTask scheduling of distributed applications is 
critical 

ÁAssign tasks to nodes by trying to  

ǐSpeed up the execution of the application  

ǐExploit (almost) all the available resources 

ǐReduce the impact of  node failures 
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ÁDistributed data storage 

ÁHow do we store data persistently on disk and 
keep it available if nodes can fail? 

ǐRedundancy is the solution, but it increases the 
complexity of the system 

ÁNetwork bottleneck 

ÁReduce the amount of data send through the 
network 

ǐMove computation and code to data 
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ÁDistributed computing is not a new topic 
ÁHPC (High-performance computing) ~1960 

ÁGrid computing ~1990 

ÁDistributed databases ~1990 
ÁHence, many solutions to the mentioned 

challenges are already available 
ÁBut we are now facing big data driven-

problems 
­ The former solutions are not adequate to address 

big data volumes 
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ÁTypical Big Data Problem 
ÁIterate over a large number of records/objects  
ÁExtract something of interest from each record/object 
ÁAggregate intermediate results 
ÁGenerate final output 

ÁThe challenges:  
ÁParallelization 
ÁDistributed storage of large data sets (Terabytes, 

Petabytes)  
ÁNode Failure management 
ÁNetwork bottleneck 
ÁDiverse input format (data diversity & heterogeneity) 
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ÁScalable fault-tolerant distributed system for 
Big Data 
ÁDistributed Data Storage  

ÁDistributed Data Processing  

ÁBorrowed concepts/ideas from the systems 
designed at Google (Google File System for 
'ÏÏÇÌÅȭÓ MapReduce)  

ÁOpen source project under the Apache license 
ǐBut there are also many commercial implementations 

(e.g., Cloudera, Hortonworks, MapR)    
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ÁDec 2004 ɀ Google published a paper about GFS 
ÁJuly 2005 ɀ Nutch uses MapReduce 
ÁFeb 2006 ɀ Hadoop becomes a Lucene 

subproject 
ÁApr 2007 ɀ Yahoo! runs it on a 1000-node cluster 
ÁJan 2008 ɀ Hadoop becomes an Apache Top 

Level Project 
ÁJul 2008 ɀ Hadoop is tested on a 4000 node 

cluster 
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ÁFeb 2009 ɀ The Yahoo! Search Webmap is a 
Hadoop application that runs on more than 
10,000 core Linux cluster 
ÁJune 2009 ɀ Yahoo! made available the source 

code of its production version of Hadoop 
ÁIn 2010 Facebook claimed that they have the 

largest Hadoop cluster in the world with 21 
PB of storage 
ÁOn July 27, 2011 they announced the data has 

grown to 30 PB. 
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ÁAmazon 
ÁFacebook 
ÁGoogle 
ÁIBM 
ÁJoost 
ÁLast.fm 
ÁNew York Times 
ÁPowerSet 
ÁVeoh 
ÁYahoo! 
ÁȣȢȢ 
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ÁHadoop 
ÁDesigned for Data intensive workloads 

ÁUsually, no CPU demanding/intensive tasks  
ÁHPC (High-performance computing) 
ÁA supercomputer with a high-level computational 

capacity 
ǐPerformance of a supercomputer is measured in 

floating-point operations per second (FLOPS) 

ÁDesigned for CPU intensive tasks 

Á5ÓÕÁÌÌÙ ÉÔ ÉÓ ÕÓÅÄ ÔÏ ÐÒÏÃÅÓÓ ȰÓÍÁÌÌȱ ÄÁÔÁ ÓÅÔÓ 
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ÁCore components of Hadoop: 
ÁDistributed Big Data Processing Infrastructure based 

on the MapReduce programming paradigm 
ǐProvides a high-level abstraction view 
ǐProgrammers do not need to care about task scheduling and 

synchronization 

ǐFault-tolerant 
ǐNode and task failures are automatically managed by the Hadoop 

system 

ÁHDFS (Hadoop Distributed File System) 
ǐHigh availability distributed storage 

ǐFault-tolerant 
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ÁSeparates the what from the how 

ÁHadoop programs are based on the MapReduce 
programming paradigm 

ÁMapReduce ÁÂÓÔÒÁÃÔÓ Á×ÁÙ ÔÈÅ ȰÄÉÓÔÒÉÂÕÔÅÄȱ ÐÁÒÔ 
of the problem (scheduling, synchronization, etc) 

ǐProgrammers focus on what 

ÁThe distributed part (scheduling, synchronization, 
etc) of the problem is handled by the framework 

ǐThe Hadoop infrastructure focuses on how 
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ÁBut an in-depth knowledge of the Hadoop 
framework is important to develop efficient 
applications 

ÁThe design of the  application must exploit data 
locality and limit network usage/data sharing 
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ÁHDFS  
ÁStandard Apache Hadoop distributed file system 
ÁProvides global file namespace 
ÁStores data redundantly on multiple nodes to provide 

persistence and availability 
ǐFault-tolerant file system 

ÁTypical usage pattern 
ÁHuge files (GB to TB) 
ÁData is rarely updated 
ÁReads and appends are common  
ǐUsually, random read/write operations are not performed 
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Á%ÁÃÈ  ÆÉÌÅ ÉÓ ÓÐÌÉÔ ÉÎ ȰÃÈÕÎËÓȾÂÌÏÃËÓȱ that are 
spread across the servers 

ÁEach chuck is replicated on different servers 
(usually there are 3 replicas per chunk) 

ǐEnsures persistence and availability 

ǐTo increase persistence and availability, replicas are 
stored in different racks, if it is possible 

ÁTypically each chunk is 64-128MB 
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ÁThe Master node, a.k.a. Name Nodes in HDFS, is 
a special node/server that 
ÁStores HDFS metadata 
ǐE.g., the mapping between the name of a file and the location 

of its chunks 

ÁMight be replicated 
ÁClient applications: file access through HDFS 

APIs 
ÁTalk to the master node to find data/chuck servers 

associated with the file of interest  

ÁConnect to the selected chunk servers to access data 
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ÁMany Hadoop-related projects/systems are 
available 
ÁHive 
ǐA distributed relational database, based on MapReduce, for 

querying data stored in HDFS by means of a query language 
based on SQL 

ÁHBase 
ǐA distributed column-oriented database that uses HDFS for 

storing data 

ÁPig 
ǐA data flow language and execution environment, based on 

MapReduce, for exploring very large datasets  
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ÁSqoop 

ǐA tool for efficiently moving data from traditional 
relational databases and external flat file sources to 
HDFS 

ÁZooKeeper 

ǐA distributed coordination service. It provides primitives 
such as distributed locks  

ÁȣȢ 

ÁEach project/system addresses one specific 
class of problems 
 43 
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ÁInput 

ÁA large textual file of words 

ÁProblem 

ÁCount the number of times each distinct word 
appears in the file 

ÁOutput 

ÁA list of pairs <word, number>, counting the 
number of occurrences of each specific word in 
the input file 

 

ÁCase 1: Entire file fits in main memory 
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ÁCase 1: Entire file fits in main memory 
ÁA traditional single node approach is probably the 

most efficient solution in this case 
ǐThe complexity and overheads of a distributed system 
ÁÆÆÅÃÔÓ ÔÈÅ ÐÅÒÆÏÒÍÁÎÃÅ ×ÈÅÎ ÆÉÌÅÓ ÁÒÅ ȰÓÍÁÌÌȱ 
ǐȰÓÍÁÌÌȱ ÄÅÐÅÎÄÓ ÏÎ ÔÈÅ ÒÅÓÏÕÒÃÅÓ ÙÏÕ have 
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ÁCase 1: Entire file fits in main memory 
ÁA traditional single node approach is probably the 

most efficient solution in this case 
ǐThe complexity and overheads of a distributed system 
ÁÆÆÅÃÔÓ ÔÈÅ ÐÅÒÆÏÒÍÁÎÃÅ ×ÈÅÎ ÆÉÌÅÓ ÁÒÅ ȰÓÍÁÌÌȱ 
ǐȰÓÍÁÌÌȱ ÄÅÐÅÎÄÓ ÏÎ ÔÈÅ ÒÅÓÏÕÒÃÅÓ ÙÏÕ ÈÁÖÅ 

ÁCase 2: File too large to fit in main memory 
ÁHow can we split this problem in a set of (almost) 

independent sub-tasks, and  

Áexecute them in parallel on a cluster of servers? 

ÁSuppose that 

ÁThe cluster has 3 servers 

ÁThe content of the input file is 

ǐȰ4ÏÙ ÅØÁÍÐÌÅ ÆÉÌÅ ÆÏÒ Hadoop. Hadoop running 
ÅØÁÍÐÌÅȢȱ 

ÁThe input file is split into 2 chunks 

ÁThe number of replicas is 1 
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