
28/02/2020

1

28/02/2020

2

ÁThe amount of data increases every day
ÁSome numbers (Ḑ 2012):

ÁData processed by Google every day: 100+ PB

ÁData processed by Facebook every day: 10+ PB

ÁTo analyze them, systems that scale with
respect to the data volume are needed

3

ÁAnalyze 10 billion web pages
ÁAverage size of a webpage: 20KB
ÁSize of the collection: 10 billion x 20KBs =

200TB
ÁHDD hard disk read bandwidth: 150MB/sec
ÁTime needed to read all web pages (without

analyzing them): 2 million seconds = more
than 15 days
ÁA single node architecture is not adequate

4

28/02/2020

3

ÁAnalyze 10 billion web pages
ÁAverage size of a webpage: 20KB
ÁSize of the collection: 10 billion x 20KBs =

200TB
ÁSSD hard disk read bandwidth: 550MB/sec
ÁTime needed to read all web pages (without

analyzing them): 2 million seconds = more
than 4 days
ÁA single node architecture is not adequate

5

ÁFailures are part of everyday life, especially in
data center
ÁA single server stays up for 3 years (~1000 days)
ǐ10 servers ­ 1 failure every 100 days (~3 months)

ǐ100 servers ­ 1 failure every 10 days

ǐ1000 servers ­ 1 failure/day

ÁSources of failures
ÁHardware/Software

ÁElectrical, Cooling, ...

ÁUnavailability of a resource due to overload

6

28/02/2020

4

ÁLALN data [DSN 2006]
ÁData for 5000 machines, for 9 years

ÁHardware failures: 60%, Software: 20%, Network
5%

ÁDRAM error analysis [Sigmetrics 2009]
ÁData for 2.5 years

Á8% of DIMMs affected by errors
ÁDisk drive failure analysis [FAST 2007]
ÁUtilization and temperature major causes of

failures

7

ÁFailure types

ÁPermanent

ǐE.g., Broken motherboard

ÁTransient

ǐE.g., Unavailability of a resource due to overload

8

28/02/2020

5

ÁNetwork becomes the bottleneck if big amounts
of data need to be exchanged between
nodes/servers
ÁNetwork bandwidth (in a data center): 10Gbps
ÁMoving 10 TB from one server to another takes more

than 2 hours
­ Data should be moved across nodes only when it
is indispensable
ÁUsually, codes/programs are small (few MBs)
­ Move code (programs) and computation to data

9

ÁNetwork becomes the bottleneck if big amounts
of data need to be exchanged between
nodes/servers
ÁNetwork bandwidth (in a data center): 10Gbps
ÁMoving 10 TB from one server to another takes more

than 2 hours
­ Data should be moved across nodes only when it
is indispensable
ÁUsually, codes/programs are small (few MBs)
­ Move code (programs) and computation to data

 Data locality

10

28/02/2020

6

Memory

Disk

CPU

Server (Single node)

11

ÁSmall data

ÁData can be completely
loaded in main memory

Memory

Disk

CPU
Machine Learning, Statistics

Server (Single node)

12

28/02/2020

7

ÁLarge data

ÁData can not be completely
loaded in main memory

ǐLoad in main memory one chunk
of data at a time

ǐProcess it and store some statistics

ǐCombine statistics to compute
the final result

Memory

Disk

CPU
Ȱ#ÌÁÓÓÉÃÁÌȱ ÄÁÔÁ ÍÉÎÉÎÇ

Server (Single node)

13

ÁCluster of servers (data center)

ÁComputation is distributed across servers

ÁData are stored/distributed across servers

ÁStandard architecture in the Big data context
(Ḑ 2012)

ÁCluster of commodity Linux nodes/servers

ǐ32 GB of main memory per node

ÁGigabit Ethernet interconnection

 14

28/02/2020

8

2ÁÃË ȣ

ȣ Mem

Disk

CPU

Mem

Disk

CPU

ȣ Mem

Disk

CPU

Mem

Disk

CPU

Switch

Each rack contains 16-64 nodes

Switch

Switch
1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

ȣ

ȣ

Rack 1 Rack M

Switch

15

Server 1 Server .. Server .. Server N

16

28/02/2020

9

17

ÁCurrent systems must scale to address

ÁThe increasing amount of data to analyze

ÁThe increasing number of users to serve

ÁThe increasing complexity of the problems

ÁTwo approaches are usually used to address
scalability issues

ÁVertical scalability (scale up)

ÁHorizontal scalability (scale out)

18

28/02/2020

10

ÁVertical scalability (scale up)

ÁAdd more power/resources (main memory, CPUs)
to a single node (high-performing server)

ǐCost of super-computers is not linear with respect to
their resources

ÁHorizontal scalability (scale out)

ÁAdd more nodes (commodity servers) to a system

ǐThe cost scales approximately linearly with respect to
the number of added nodes

ǐBut data center efficiency is a difficult problem to solve

 19

ÁFor data-intensive workloads, a large number of
commodity servers is preferred over a small
number of high-performing servers
ÁAt the same cost, we can deploy a system that

processes data more efficiently and is more fault-
tolerant

ÁHorizontal scalability (scale out) is preferred for
big data applications
ÁBut distributed computing is hard
­New systems hiding the complexity of the distributed part of

the problem to developers are needed

20

28/02/2020

11

ÁDistributed programming is hard

ÁProblem decomposition and parallelization

ÁTask synchronization

ÁTask scheduling of distributed applications is
critical

ÁAssign tasks to nodes by trying to

ǐSpeed up the execution of the application

ǐExploit (almost) all the available resources

ǐReduce the impact of node failures

21

ÁDistributed data storage

ÁHow do we store data persistently on disk and
keep it available if nodes can fail?

ǐRedundancy is the solution, but it increases the
complexity of the system

ÁNetwork bottleneck

ÁReduce the amount of data send through the
network

ǐMove computation and code to data

22

28/02/2020

12

ÁDistributed computing is not a new topic
ÁHPC (High-performance computing) ~1960

ÁGrid computing ~1990

ÁDistributed databases ~1990
ÁHence, many solutions to the mentioned

challenges are already available
ÁBut we are now facing big data driven-

problems
­ The former solutions are not adequate to address

big data volumes

 23

ÁTypical Big Data Problem
ÁIterate over a large number of records/objects
ÁExtract something of interest from each record/object
ÁAggregate intermediate results
ÁGenerate final output

ÁThe challenges:
ÁParallelization
ÁDistributed storage of large data sets (Terabytes,

Petabytes)
ÁNode Failure management
ÁNetwork bottleneck
ÁDiverse input format (data diversity & heterogeneity)

24

28/02/2020

13

ÁScalable fault-tolerant distributed system for
Big Data
ÁDistributed Data Storage

ÁDistributed Data Processing

ÁBorrowed concepts/ideas from the systems
designed at Google (Google File System for
'ÏÏÇÌÅȭÓ MapReduce)

ÁOpen source project under the Apache license
ǐBut there are also many commercial implementations

(e.g., Cloudera, Hortonworks, MapR)

26

28/02/2020

14

ÁDec 2004 ɀ Google published a paper about GFS
ÁJuly 2005 ɀ Nutch uses MapReduce
ÁFeb 2006 ɀ Hadoop becomes a Lucene

subproject
ÁApr 2007 ɀ Yahoo! runs it on a 1000-node cluster
ÁJan 2008 ɀ Hadoop becomes an Apache Top

Level Project
ÁJul 2008 ɀ Hadoop is tested on a 4000 node

cluster

27

ÁFeb 2009 ɀ The Yahoo! Search Webmap is a
Hadoop application that runs on more than
10,000 core Linux cluster
ÁJune 2009 ɀ Yahoo! made available the source

code of its production version of Hadoop
ÁIn 2010 Facebook claimed that they have the

largest Hadoop cluster in the world with 21
PB of storage
ÁOn July 27, 2011 they announced the data has

grown to 30 PB.

28

28/02/2020

15

ÁAmazon
ÁFacebook
ÁGoogle
ÁIBM
ÁJoost
ÁLast.fm
ÁNew York Times
ÁPowerSet
ÁVeoh
ÁYahoo!
ÁȣȢȢ

29

ÁHadoop
ÁDesigned for Data intensive workloads

ÁUsually, no CPU demanding/intensive tasks
ÁHPC (High-performance computing)
ÁA supercomputer with a high-level computational

capacity
ǐPerformance of a supercomputer is measured in

floating-point operations per second (FLOPS)

ÁDesigned for CPU intensive tasks

Á5ÓÕÁÌÌÙ ÉÔ ÉÓ ÕÓÅÄ ÔÏ ÐÒÏÃÅÓÓ ȰÓÍÁÌÌȱ ÄÁÔÁ ÓÅÔÓ

30

28/02/2020

16

ÁCore components of Hadoop:
ÁDistributed Big Data Processing Infrastructure based

on the MapReduce programming paradigm
ǐProvides a high-level abstraction view
ǐProgrammers do not need to care about task scheduling and

synchronization

ǐFault-tolerant
ǐNode and task failures are automatically managed by the Hadoop

system

ÁHDFS (Hadoop Distributed File System)
ǐHigh availability distributed storage

ǐFault-tolerant

31

Switch

Rack 1

32

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

2ÁÃË ȣ

ȣ

ȣ Switch

28/02/2020

17

Switch

Rack 1

33

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

2ÁÃË ȣ

ȣ

ȣ Switch

Switch

Rack 1

34

Switch

Rack M

Server 1 Server 2

Mem

CPU

Disk

Mem

CPU

Disk

Server N-1 Server N

Mem

CPU

Disk

Mem

CPU

Disk

Switch

Example with number of replicas per chunk = 2

2ÁÃË ȣ

ȣ

ȣ Switch

HDFS

28/02/2020

18

Switch

Rack 1

35

Switch

Rack M

Server 1 Server 2

Mem

CPU

C0 C1

C7 C2

Disk

Mem

CPU

C6 C4

C5 C3

Disk

Server N-1 Server N

Mem

CPU

C2 C1

C6 C7

Disk

Mem

CPU

C0 C4

C5 C3

Disk

Switch

Example with number of replicas per chunk = 2

2ÁÃË ȣ

ȣ

ȣ Switch

HDFS

ÁSeparates the what from the how

ÁHadoop programs are based on the MapReduce
programming paradigm

ÁMapReduce ÁÂÓÔÒÁÃÔÓ Á×ÁÙ ÔÈÅ ȰÄÉÓÔÒÉÂÕÔÅÄȱ ÐÁÒÔ
of the problem (scheduling, synchronization, etc)

ǐProgrammers focus on what

ÁThe distributed part (scheduling, synchronization,
etc) of the problem is handled by the framework

ǐThe Hadoop infrastructure focuses on how

36

28/02/2020

19

ÁBut an in-depth knowledge of the Hadoop
framework is important to develop efficient
applications

ÁThe design of the application must exploit data
locality and limit network usage/data sharing

37

ÁHDFS
ÁStandard Apache Hadoop distributed file system
ÁProvides global file namespace
ÁStores data redundantly on multiple nodes to provide

persistence and availability
ǐFault-tolerant file system

ÁTypical usage pattern
ÁHuge files (GB to TB)
ÁData is rarely updated
ÁReads and appends are common
ǐUsually, random read/write operations are not performed

38

28/02/2020

20

Á%ÁÃÈ ÆÉÌÅ ÉÓ ÓÐÌÉÔ ÉÎ ȰÃÈÕÎËÓȾÂÌÏÃËÓȱ that are
spread across the servers

ÁEach chuck is replicated on different servers
(usually there are 3 replicas per chunk)

ǐEnsures persistence and availability

ǐTo increase persistence and availability, replicas are
stored in different racks, if it is possible

ÁTypically each chunk is 64-128MB

39

Switch

Rack 1

40

Switch

Rack M

Server 1 Server 2

Mem

CPU

C0 C1

C7 C2

Disk

Mem

CPU

C6 C4

C5 C3

Disk

Server N-1 Server N

Mem

CPU

C2 C1

C6 C7

Disk

Mem

CPU

C0 C4

C5 C3

Disk

Switch

Example with number of replicas per chunk = 2

2ÁÃË ȣ

ȣ

ȣ Switch

28/02/2020

21

ÁThe Master node, a.k.a. Name Nodes in HDFS, is
a special node/server that
ÁStores HDFS metadata
ǐE.g., the mapping between the name of a file and the location

of its chunks

ÁMight be replicated
ÁClient applications: file access through HDFS

APIs
ÁTalk to the master node to find data/chuck servers

associated with the file of interest

ÁConnect to the selected chunk servers to access data

41

ÁMany Hadoop-related projects/systems are
available
ÁHive
ǐA distributed relational database, based on MapReduce, for

querying data stored in HDFS by means of a query language
based on SQL

ÁHBase
ǐA distributed column-oriented database that uses HDFS for

storing data

ÁPig
ǐA data flow language and execution environment, based on

MapReduce, for exploring very large datasets

42

28/02/2020

22

ÁSqoop

ǐA tool for efficiently moving data from traditional
relational databases and external flat file sources to
HDFS

ÁZooKeeper

ǐA distributed coordination service. It provides primitives
such as distributed locks

ÁȣȢ

ÁEach project/system addresses one specific
class of problems
 43

28/02/2020

23

ÁInput

ÁA large textual file of words

ÁProblem

ÁCount the number of times each distinct word
appears in the file

ÁOutput

ÁA list of pairs <word, number>, counting the
number of occurrences of each specific word in
the input file

ÁCase 1: Entire file fits in main memory

28/02/2020

24

ÁCase 1: Entire file fits in main memory
ÁA traditional single node approach is probably the

most efficient solution in this case
ǐThe complexity and overheads of a distributed system
ÁÆÆÅÃÔÓ ÔÈÅ ÐÅÒÆÏÒÍÁÎÃÅ ×ÈÅÎ ÆÉÌÅÓ ÁÒÅ ȰÓÍÁÌÌȱ
ǐȰÓÍÁÌÌȱ ÄÅÐÅÎÄÓ ÏÎ ÔÈÅ ÒÅÓÏÕÒÃÅÓ ÙÏÕ have

ÁCase 1: Entire file fits in main memory
ÁA traditional single node approach is probably the

most efficient solution in this case
ǐThe complexity and overheads of a distributed system
ÁÆÆÅÃÔÓ ÔÈÅ ÐÅÒÆÏÒÍÁÎÃÅ ×ÈÅÎ ÆÉÌÅÓ ÁÒÅ ȰÓÍÁÌÌȱ
ǐȰÓÍÁÌÌȱ ÄÅÐÅÎÄÓ ÏÎ ÔÈÅ ÒÅÓÏÕÒÃÅÓ ÙÏÕ ÈÁÖÅ

ÁCase 2: File too large to fit in main memory

28/02/2020

25

ÁCase 1: Entire file fits in main memory
ÁA traditional single node approach is probably the

most efficient solution in this case
ǐThe complexity and overheads of a distributed system
ÁÆÆÅÃÔÓ ÔÈÅ ÐÅÒÆÏÒÍÁÎÃÅ ×ÈÅÎ ÆÉÌÅÓ ÁÒÅ ȰÓÍÁÌÌȱ
ǐȰÓÍÁÌÌȱ ÄÅÐÅÎÄÓ ÏÎ ÔÈÅ ÒÅÓÏÕÒÃÅÓ ÙÏÕ ÈÁÖÅ

ÁCase 2: File too large to fit in main memory
ÁHow can we split this problem in a set of (almost)

independent sub-tasks, and

Áexecute them in parallel on a cluster of servers?

ÁSuppose that

ÁThe cluster has 3 servers

ÁThe content of the input file is

ǐȰ4ÏÙ ÅØÁÍÐÌÅ ÆÉÌÅ ÆÏÒ Hadoop. Hadoop running
ÅØÁÍÐÌÅȢȱ

ÁThe input file is split into 2 chunks

ÁThe number of replicas is 1

50

