
28/04/2020 

1 



28/04/2020 

2 

 The content of each RDD is split in partitions 
 The number of partitions and the content of each 

partition depend on how RDDs are 
defined/created 

 The number of partitions impacts on the 
maximum parallelization degree of the Spark 
application  
 But pay attention that the amount of resources is 

limited (there is a maximum number of executors 
and parallel tasks) 

3 

 Disadvantages of too few partitions 
 Less concurrency/parallelism 

▪ There could be worker nodes that are idle and could be 
used to speed up the execution of your application 

 Data skewing and improper resource utilization 
▪ Data might be skewed on one partition 

▪ One partition with many data 

▪ Many partitions with few data 

▪ The worker node that processes that large partition 
needs more time than the other workers 
▪ It becomes the bottleneck of your application 

4 



28/04/2020 

3 

 Disadvantages of too many partitions 

 Task scheduling may take more time than actual 
execution time if the amount of data in some 
partitions is too small 

5 

 Only some specific transformations set the 
number of partitions of the returned RDD 

 parallelize(), textFile(), repartition(), coalesce() 

 The majority of the Spark transformations do 
not change the number of partitions 

 Those transformations preserve the  number of 
partitions of the input RDD 

▪ i.e., the returned RDD has the same number of 
partitions of the input RDD 

6 



28/04/2020 

4 

 parallelize(collection) 
 The number of partitions of the returned RDD is equal 

to sc.defaultParallelism 
 Sparks tries to balance the number of elements per 

partition in the returned RDD 
▪ Elements are not assigned to partitions based on their value 

 parallelize(collection, numSlices) 
 The number of partitions of the returned RDD is equal 

to numSlices 
 Sparks tries to balance the number of elements per 

partition in the returned RDD 
▪ Elements are not assigned to partitions based on their value 

 
7 

 textFile(pathInputData) 
 The number of partitions of the returned RDD is equal to 

the number of input chunks/blocks of the input HDFS 
data 

 Each partition contains the content of one of the input 
blocks 

 textFile(pathInputData, minPartitions) 
 The user specified number of partitions must be greater 

than the number of input blocks 

 The number of partitions of the returned RDD is greater 
than or equal to the specified value minPartitions 

 Each partition contains a part of one input blocks 

 
8 



28/04/2020 

5 

 repartition(numPartitions) 

 numPartitions can be greater or smaller than the 
number of partitions of the input RDD 

 The number of partitions of the returned RDD is equal 
to numPartitions 

 Sparks tries to balance the number of elements per 
partition in the returned RDD 

▪ Elements are not assigned to partitions based on their value 

 A shuffle operation is executed to assign input 
elements to the partitions of the returned RDD 

9 

 coalesce(numPartitions) 
 numPartitions < number of partitions of the input 

RDD 
 The number of partitions of the returned RDD is equal 

to numPartitions 
 Sparks tries to balance the number of elements per 

partition in the returned RDD 
▪ Elements are not assigned to partitions based on their value 

 Usually no shuffle operation is executed to assign 
input elements to the partitions of the returned RDD 

 coalesce is more efficient than repartition to reduce 
the number of partitions 

10 



28/04/2020 

6 

 Spark allows specifying how to partition the 
content of RDDs of key-value pairs 
 The input pairs are grouped in partitions based on the 

integer value returned by a function applied on the 
key of each input pair 

 This operation can be useful to improve the efficiency 
of the next transformations by reducing the amount 
of shuffle operations and the amount of data sent on 
the network in the next steps of the application 
▪ Spark can optimize the execution of the transformations if 

the input RDDs of pairs are properly partitioned 

 
11 

 Partitioning is based on the partitionBy() 
transformation 

 partitionBy(numPartitions) 

 The input pairs are grouped in partitions based on 
the integer value returned by a default hash 
function applied on the key of each input pair 

 A shuffle operation is executed to assign input 
elements to the partitions of the returned RDD 

 

12 



28/04/2020 

7 

 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The default partition function is portable_hash 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = portable_hash(key) % numPart 

 

13 

 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The default partition function is portable_hash 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = portable_hash(key) % numPart 

 

14 

This function returns and integer 



28/04/2020 

8 

 partitionBy(numPartitions, partitionFunc) 

 The input pairs are grouped in partitions based on 
the integer value returned by the user provided 
partitionFunc function 

 A shuffle operation is executed to assign input 
elements to the partitions of the returned RDD 

15 

 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The partition function is partitionFunc 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = partitionFunc(key) % numPart 

 

16 



28/04/2020 

9 

 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The partition function is partitionFunc 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = partitionFunc(key) % numPart 

 

17 

Custom partition function 

 Partitioning Pair RDDs by using partitionBy() is useful 
only when the same partitioned RDD is cached and 
reused multiple times in the application in time and 
network consuming key-oriented transformations 
 E.g., the same partitioned RDD is used in many join(), 

cogroup, groupyByKey(), .. transformations in different 
paths/branches of the application (different 
paths/branches of the DAG)  

 Pay attention to the amount of data that is actually 
sent on the network 
 partitionBy() can slow down your application instead of 

speeding it up 

18 



28/04/2020 

10 

 Create an RDD from a textual file containing 
a list of pairs (pageID, list of linked pages) 

 Implement the (simplified) PageRank 
algorithm and compute the pageRank of 
each input page 

 Print the result on the standard output 

19 

 # Read the input file with the structure of the web graph 
 inputData = sc.textFile("links.txt“) 
 
 # Format of each input line 
 # PageId,LinksToOtherPages - e.g., P3 [P1,P2,P4,P5] 
 def mapToPairPageIDLinks(line): 
     fields = line.split(' ') 
     pageID = fields[0] 
     links = fields[1].split(',') 
 
     return (pageID, links) 
 
 
 links = inputData.map(mapToPairPageIDLinks)\ 
  .partitionBy(inputData.getNumPartitions())\ 
  .cache() 

20 



28/04/2020 

11 

 # Read the input file with the structure of the web graph 
 inputData = sc.textFile("links.txt“) 
 
 # Format of each input line 
 # PageId,LinksToOtherPages - e.g., P3 [P1,P2,P4,P5] 
 def mapToPairPageIDLinks(line): 
     fields = line.split(' ') 
     pageID = fields[0] 
     links = fields[1].split(',') 
 
     return (pageID, links) 
 
 
 links = inputData.map(mapToPairPageIDLinks)\ 
  .partitionBy(inputData.getNumPartitions())\ 
  .cache() 

21 

Note that the returned Pair RDD is partitioned and 
cached 

 # Initialize each page's rank to 1.0; since we use mapValues,  
 # the resulting RDD will have the same partitioner as links 
 ranks = links.mapValues(lambda v: 1.0) 
 
 

22 



28/04/2020 

12 

 # Function that returns a set of pairs from each input pair 
 # input pair: (pageid, (linked pages, current page rank of pageid) ) 
 # one output pair for each linked page. Output pairs: 
 # (pageid linked page,  
 #   current page rank of the linking page pageid / number of linked pages) 
 def computeContributions(pageIDLinksPageRank): 
     pagesContributions = [] 
         currentPageRank = pageIDLinksPageRank[1][1] 
     linkedPages = pageIDLinksPageRank[1][0] 
     numLinkedPages = len(linkedPages) 
     contribution = currentPageRank/numLinkedPages 
     
     for pageidLinkedPage in linkedPages: 
         pagesContributions.append( (pageidLinkedPage, contribution)) 
     
     return pagesContributions 
 

23 

 # Run 30 iterations of PageRank 
 for x in range(30): 
     # Retrieve for each page its current pagerank and 
     # the list of linked pages by using the join transformation 
     pageRankLinks = links.join(ranks) 
 
     # Compute contributions from linking pages to linked pages  
     # for this iteration 
     contributions = pageRankLinks.flatMap(computeContributions) 
 
     # Update current pagerank of all pages for this iteration 
     ranks = contributions\ 
              .reduceByKey(lambda contrib1, contrib2: contrib1+contrib2) 
 
 # Print the result 
  ranks.collect() 24 



28/04/2020 

13 

 # Run 30 iterations of PageRank 
 for x in range(30): 
     # Retrieve for each page its current pagerank and 
     # the list of linked pages by using the join transformation 
     pageRankLinks = links.join(ranks) 
 
     # Compute contributions from linking pages to linked pages  
     # for this iteration 
     contributions = pageRankLinks.flatMap(computeContributions) 
 
     # Update current pagerank of all pages for this iteration 
     ranks = contributions\ 
              .reduceByKey(lambda contrib1, contrib2: contrib1+contrib2) 
 
 # Print the result 
  ranks.collect() 25 

The join transformation is invoked many times on the links Pair RDD. 
The content of links is constant (it does not change during the loop 
interations. 
Hence, caching it and also partitioning its content by key is useful. 
- Its content is  computed one time and cached in the main memory of the 
executors 
- Its is shuffled and sent on the network only one time because we applied 
partitionBy on it. 

Transformation Number of partitions Partitioner 

sc.parallelize(…)  sc.defaultParallelism NONE 

sc.textFile(…)  sc.defaultParallelism or number of 
file blocks , whichever is greater 

NONE 

filter(),map(),flatMap(), 
distinct()  

same as parent RDD  
 

NONE except 
filter preserve 
parent RDD’s 

partitioner 

rdd.union(otherRDD) rdd.partitions.size + 
 otherRDD. partitions.size 

rdd.intersection(otherRDD)
  

max(rdd.partitions.size,  
otherRDD. partitions.size) 

rdd.subtract(otherRDD) rdd.partitions.size 

rdd.cartesian(otherRDD) rdd.partitions.size *  
otherRDD. partitions.size 

26 



28/04/2020 

14 

Transformation Number of partitions Partitioner 

reduceByKey(),foldByKey(), 
combineByKey(), 
groupByKey() 

same as parent RDD HashPartitioner 

sortByKey() same as parent RDD RangePartitioner 

mapValues(), 
flatMapValues()  

same as parent RDD parent RDD’s 
partitioner 

cogroup(), join(), 
,leftOuterJoin(), 
rightOuterJoin() 

depends upon input properties of 
two involved RDDs 

HashPartitioner 

27 



28/04/2020 

15 

 The join transformation is expensive in terms 
of execution time and amount of data sent on 
the network 

 If one of the two input RDDs of key-value 
pairs is small enough to be stored in the main 
memory when can use a more efficient 
solution based on a broadcast variable 
 Broadcast hash join (or map-side join) 

 The smaller the small RDD, the higher the speed 
up 

29 

 Create a large RDD from a textual file 
containing a list of pairs (userID, post) 

 Each user can be associated to several posts 

 Create a small RDD from a textual file 
containing a list of pairs (userID, (name, 
surname, age) ) 

 Each user can be associated to one single line in 
this second file 

 Compute the join between these two files 

 30 



28/04/2020 

16 

 # Read the first input file 
 largeRDD = sc.textFile("post.txt") 
 .map(lambda line: (int(line.split(',')[0]), line.split(',')[1]) ) 
 
 # Read the second input file 
 smallRDD = sc.textFile("profiles.txt") 
 .map(lambda line: (int(line.split(',')[0]), line.split(',')[1]) ) 
 
 # Broadcast join version 
 # Store the "small" RDD in a local python variable in the driver  
 # and broadcast it 
 localSmallTable = smallRDD.collectAsMap() 
 localSmallTableBroadcast = sc.broadcast(localSmallTable) 

31 

 # Function for joining a record of the large RDD with the matching 
 #  record of the small one 
 def joinRecords(largeTableRecord): 
     returnedRecords = [] 
         key = largeTableRecord[0] 
     valueLargeRecord = largeTableRecord[1] 
     
     if key in localSmallTableBroadcast.value: 
         returnedRecords.append( (key, (valueLargeRecord,\ 

 localSmallTableBroadcast.value[key]) ) )  
     
     return returnedRecords 
 
 # Execute the broadcast join operation by using a flatMap 
 # transformation on the "large" RDD 
 userPostProfileRDDBroadcatJoin = largeRDD.flatMap(joinRecords) 32 


