
Databases
Practice #3 - Oracle SQLPLUS

This practice comprises two parts. Part I proposes some more queries on an existing
database, to be solved using the SQL language. In Part II, you are requested to write the
SQL scripts for creating and populating a database, whose logical schema is provided.

PART I

Purpose
Write some SQL queries on an Oracle database.

Connection to the Oracle database
The SQL queries are executed through the SQL Developer software.

1) Connection to the database

• Launch Oracle SQL Developer
• Click on New connection

2) Login

To logon, you have to insert the following parameters:
• Connection name: oracleBD
• Username: bdatiXY o XY are the last two digits of the PC number you are

using
• Password: oracXY o XY are the last two digits of the PC number you are

using
• Hostname: cclix4.polito.it
• Port: 1521
• SID: xe

New connection

For example, if you are working on pc number 23, the corresponding username is
bdati15 and the password is orac23.

Write and execute SQL queries
Write the SQL query in the Worksheet and execute it by clicking on the “Run script”
button.

Run script

 2. Description of the Delivery database
The Delivery database gathers information about the activities of a firm delivering and
collecting goods for various customer companies.

The DELIVERERS table contains the personal data for the deliverers working at the
firm. For each deliverer, the following information is available: identification code
(DELIVERERID), last name, first name initials, year of birth, sex, year when she/he
began working for the firm, street, house number, city, residence postal code, cellular
phone number, and office phone number.

The COMPANIES table reports, for each customer company, the company
identification code (CompanyID) and the identification code of the deliverer who is the
company’s current reference person. In addition, it reports the number of times
(MANDATE) the deliverer held this position.

The COMPANYDEL table reports the total number of good deliveries
(NUMDELIVERIES) and collections (NUMCOLLECTIONS) made by each
deliverer for each customer company. Note that the table only reports the
deliverercompany pairs such that the deliverer performed at least one delivery or
collection for the company.

The PENALTIES table reports the fines received by each deliverer. For each fine, the fine
code (PENALTYID), the deliverer code, the fine date, and amount to be paid are stored.

The database schema is shown in the subsequent figure. Next Section 2 reports the table
instance.

PENALTIES
PAYMENTID
DELIVERERID
DAT A
AMOUNT

COMPANY DEL

COMPANYID
DELIVERERID
NUMDELIVERIES
NUMCOLLE CTIONS

DELIVERER S
DELIVERERID
NAME
INITIALS
YEAR OF BIRTH
SEX
YEAR JOINED
STREET
HOUSENO
POSTCOD E
TOWN
CELLNO
PHONENO

CO MPAN IES
COMPANYID

DELIVERERID
MANDATE

3. Table	 instance	 for	 the	 Delivery	 database	
The primary key is underlined. Optional attributes are denoted with *.

DELIVERERS table

DELIVERERID NAME INITIA
LS

YEAR_
OF_
BIRTH

SEX YEAR
JOINED

STREET HOUSENO POSTC
ODE

TOWN CELLNO PHONENO*

2 Everett R 1948 M 1975 Stoney Road 43 3575NH Stratford 070-237893 2411
6 Parmenter R 1964 M 1977 Haseltine

Lane
80 1234KK Stratford 070-476537 8467

7 Wise GWS 1963 M 1981 Edgecombe
Way

39 9758VB Stratford 070-347689 NULL

8 Newcastle B 1962 F 1980 Station Road 4 6584WO Inglewood 070-476573 2983
27 Collins DD 1964 F 1983 Long Drive 804 8457DK Eltham 079-234857 2513
28 Collins C 1963 F 1983 Old main

Road
 10 1294QK Midhurst 010-659599 NULL

39 Bishop D 1956 M 1980 Eaton
Square

78 9629CD Stratford 070-393435 NULL

44 Baker E 1963 M 1980 Lewis Street 23 4444LJ Inglewood 070-368753 1124
57 Brown M 1971 M 1985 Edgecombe

Way
16 4377CB Stratford 070-473458 6409

83 Hope PK 1956 M 1982 Magdalene
Road

16a 1812UP Stratford 070-353548 1608

95 Miller P 1934 M 1972 High Street 33a 5746OP Douglas 070-867564 NULL
100 Parmenter P 1963 M 1979 Haseltine

Lane
80 1234KK Stratford 070-476537 6524

104 Moorman D 1970 F 1984 Stout Street 65 9437AO Eltham 079-987571 7060
112 Bailey IP 1963 F 1984 Vixen Road 8 6392LK Plymouth 010-54874 1319

 COMPANYDEL table Tabella PENALTIES

COMPANYID DELIVERERID NUMDELI
VERIES

1 2 4
1 6 9
1 8 0
1 44 7
1 57 5
1 83 3
2 8 4
2 27 11
2 104 8
2 112 4

PAYMENTID DELIVERER

ID
DATA AMOUNT

1 6 12/08/1980 100
2 44 05/05/1981 75
3 27 10/09/1983 100
4 104 08/12/1984 50
5 44 08/12/1980 25
6 8 08/12/1980 25
7 44 30/12/1982 30
8 27 12/11/1984 75

COMPANIES table

COMPANYID DELIVERERID MANDATE

1 6 first
2 27 second

3. Queries

1. For each deliverer that has received at least two fines, find the identification code (of the
deliverer), the date of the first fine and the date of the last fine.

2. For each deliverer that has been fined, find the identification code, the date of the last fine
he/she received and the amount of this fine.

3. Find the identification codes of companies where more than 30% of the deliverers in the
database have performed at least one delivery or one collection.

PART II

Purpose

The purpose of this part is to write the scripts for creating and populating a database,
given the logical schema, and to execute update and delete commands on this database,
using the SQL language.

Connection to the Oracle database
The SQL queries are executed through the SQL Developer software.

3) Connection to the database

• Launch Oracle SQL Developer
• Click on New connection

New connection

4) Login
To logon, you have to insert the following parameters:

• Connection name: oracleBD
• Username: bdatiXY o XY are the last two digits of the PC number you are

using
• Password: oracXY o XY are the last two digits of the PC number you are

using
• Hostname: cclix4.polito.it
• Port: 1521
• SID: xe

For example, if you are working on pc number 23, the corresponding username is
bdati15 and the password is orac23.

Write and execute SQL scripts
Write the script (set of SQL commands) in the Worksheet and execute it by clicking on
the “Run script” button. Scripts can be loaded by using the open button.

1. Description of the Gym database

The database you should implement is about the activities in a gym. It is described by
the following logical schema (primary keys are underlined, foreign keys are in italic,
and optional attributes are denoted with *):

TRAINER (SSN, Name, Surname, DateOfBirth, Email, PhoneNo*)
COURSE (CId, Name, Type, Level)
SCHEDULE (SSN, Day, StartTime, Duration, CId, GymRoom)

For each trainer, the Social Security Number (SSN), the name, the surname, the date of
birth, the email address, and the phone number (if any) are known. For each course, the
code, the name, the type, and the level (1-4) are known. The course schedule lists the
day of the week and the start time for each lesson of a given course taught by each
trainer, together with the duration of the lesson (in minutes) and the gym room in which
it is held.

TRAINER table

SSN Name Surname DateOfBirth Email PhoneNo
!"#$%&'()*+,-.+/0 !"#$% &'()*% +,-,.-,/01% 234'()*567'3()% !"##$
12)32)'+4*(567780 89*:% 89*:49:% +1-;-,/0,% <3<9*:49:567'3()% =.+11,,1+1+>>>%
&&&999'*4*(5667&0 !?)?@% 89*:49:% +1-;-,/0,% 23<9*:49:567'3()% =.+11,,1+1+>>>%

COURSE table

CId Name Type Level

Run script

5#+((% &2(::(:6%A9@%B?6(::?@4% &2(::(:6% ,%
5#+(+% C()D":E(:6% F#4(E%"E)(G()7% .%
5#+(6 % HDG":E?D%42(::(:6% &2(::(:6% >%

SCHEDULE table

SSN Day StartTime Duration CId GymRoom
!"#$%&'()*+,-.+/ % ":;<=>0 +(?((0 >;% IJ,11% K,%
!"#$%&'()*+,-.+/ % #@AB<=>0 ++?((0 >;% IJ,11 K,%
!"#$%&'()*+,-.+/0 #@AB<=>0 +7?((0 >;% IJ,11 K.%
12)32)'+4*(567780 ":;<=>0 +(?((0 +1% IJ,1,% K.%
12)32)'+4*(567780 ":;<=>0 ++?*(0 +1% IJ,1>% K.%
12)32)'+4*(56778 % CA<;AB<=>0 .?((0 L1% IJ,1>% K,%

Figure 1. Contents that the Gym database should include after executing the SQL

script designed in this practice.

2. Scripts
1. Write an SQL script (createDB.sql) with the commands (i.e., CREATE TABLE) for

creating the database corresponding to the logical schema described in Section 1.
In particular:

1. Define the three tables, choosing the most appropriate data type for each of
the attributes. Pay special attention to the definition of primary keys and
referential integrity constraints.

2. Choose the most appropriate constraint management policy in each context.

Note. Do pay attention to the order in which tables are created. Referenced tables
should appear first in the script, while referencing tables must appear after the
table(s) they reference.

2. Write an SQL script (populateDB.sql) containing the INSERT commands for
populating the database created in the previous point. The script should include the
insert commands required to obtain an instance of the database containing the same
data shown in the tables in Figure 1.
Note. The order in which the insert commands are executed does matter. Make sure
you follow the correct order so as not to violate the referential integrity constraints.

3. Test your createDB.sql and populateDB.sql scripts.
Note. The tables might already exist in the database if some other student has
already created them using the same account. In this case, you should execute the
following commands to delete them, prior to executing your own scripts:

1. DROP TABLE SCHEDULE;
2. DROP TABLE COURSE;

3. DROP TABLE TRAINER;

4. Write and execute the following update instructions in SQL, one by one, and check
what happens in the database.
4.1.Update the phone number of trainer identified by SSN 'KHNJHN81E30C455Y',

setting its value to '+390112333551'.

4.2.Update the database in order to move in room ‘R4’ all the lessons scheduled in
room ‘R2’

4.3.Remove from table COURSE all the courses scheduled once a week (i.e.,
appearing only once in table SCHEDULE). How is table COURSE affected by
this command? And table SCHEDULE? The effect on the two tables is
someway related with the policy of constraints management selected during the
creation of tables?

4.4.Delete the trainer with SSN 'SMTPLA80N31B791Z'. How are tables
TRAINER and SCHEDULE affected by this command? How is the result linked to
the policy of constraints management selected during the creation of tables?

Solution PART I

1. For each deliverer that has received at least two fines, find the identification code (of the
deliverer), the date of the first fine and the date of the last fine.

SELECT DELIVEREDID, MIN(DATA), MAX(DATA)

FROM PENALTIES

GROUP BY DELIVEREDID

HAVING COUNT(*)>=2;

2. For each deliverer that has been fined, find the identification code, the date of the last fine he/she
received and the amount of this fine.

SELECT P1.DELIVEREDID, DATA, AMOUNT

FROM PENALTIES P1

WHERE P1.DATA = (SELECT MAX(DATA)

 FROM PENALTIES P2

 WHERE P2. DELIVEREDID=P1.DELIVEREDID);

Find the identification codes of companies where more than 30% of the deliverers in the database
have performed at least one delivery or one collection.

 SELECT COMPANYID

 FROM COMPANYDEL

 GROUP BY COMPANYID

 HAVING COUNT(*) > (SELECT 0.30*COUNT(*)

FROM DELIVERERS);

Solution PART II

1. Write an SQL script (createDB.sql) with the commands (i.e., CREATE TABLE)

for creating the database corresponding to the logical schema described in Section
1.

-- create an empty database. Name of the database:
SET storage_engine=InnoDB;
SET FOREIGN_KEY_CHECKS=1;
CREATE DATABASE IF NOT EXISTS gym;

-- use gym
use gym;

-- drop tables if they already exist
DROP TABLE IF EXISTS TRAINER;
DROP TABLE IF EXISTS COURSE;
DROP TABLE IF EXISTS SCHEDULE;

-- create tables

create table trainer (

ssn char(20),
name varchar(50) not null,
surname varchar(50) not null,
dateofbirth date not null,
email varchar(100) not null,
phoneno varchar(30) default null,
primary key(ssn),
constraint email_constr check(email like '%@%')

);

create table course (

cid char(10),
name varchar(50) not null,
type varchar(50) not null,
clevel smallint not null,
primary key(cid),
constraint lev_constr check(clevel >= 1 and clevel <=4)

);

create table schedule (

ssn char(20),
dayofweek char(9) not null,
starttime time not null,
duration smallint not null,
cid char(10) not null,
gymroom char(5) not null,
primary key(ssn, dayofweek, starttime),
foreign key(ssn) references trainer(ssn) on delete cascade on update cascade,
foreign key(cid) references course(cid) on delete cascade on update cascade,
constraint dayofweek_constr check(dayofweek in ('Monday', 'Tuesday',
'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'))

);

2. Write an SQL script (populateDB.sql) containing the INSERT commands for

populating the database created in the previous point. The script should include the
insert commands required to obtain an instance of the database containing the same
data shown in the tables in Figure 1.

SET storage_engine=InnoDB;
SET FOREIGN_KEY_CHECKS=1;
use gym;

insert into trainer(ssn, name, surname, dateofbirth, email, phoneno)
values('SMTPLA80N31B791Z', 'Paul', 'Smith', to_date('31/12/1980', 'dd/mm/yyyy'),
'p.smith@gym.it', null);

insert into trainer(ssn, name, surname, dateofbirth, email, phoneno)
values('KHNJHN81E30C455Y', 'John', 'Johnson', to_date('30/05/1981',
'dd/mm/yyyy'), 'j.johnson@gym.it', '+2300110303444');

insert into trainer(ssn, name, surname, dateofbirth, email, phoneno)
values('AAAGGG83E30C445A', 'Peter', 'Johnson', to_date('30/05/1981',
'dd/mm/yyyy'), 'p.johnson@gym.it', '+2300110303444');

insert into course(cid, name, type, clevel) values('CT100', 'Spinning for beginners',
'Spinning', 1);

insert into course(cid, name, type, clevel) values('CT101', 'Fitdancing', 'Music activity',
2);
insert into course(cid, name, type, clevel) values('CT104', 'Advanced spinning',
'Spinning', 4);

insert into schedule(ssn, dayofweek, starttime, duration, cid, gymroom)
values('SMTPLA80N31B791Z', 'Monday', '10:00', 45, 'CT100', 'R1');

insert into schedule(ssn, dayofweek, starttime, duration, cid, gymroom)
values('SMTPLA80N31B791Z', 'Tuesday', ‘11:00', 45, 'CT100', 'R1');

insert into schedule(ssn, dayofweek, starttime, duration, cid, gymroom)
values('SMTPLA80N31B791Z', 'Tuesday', '15:00', 45, 'CT100', 'R2');

insert into schedule(ssn, dayofweek, starttime, duration, cid, gymroom)
values('KHNJHN81E30C455Y', 'Monday', '10:00', 30, 'CT101', 'R2');

insert into schedule(ssn, dayofweek, starttime, duration, cid, gymroom)
values('KHNJHN81E30C455Y', 'Monday', '11:30', 30, 'CT101', 'R2');

insert into schedule(ssn, dayofweek, starttime, duration, cid, gymroom)
values('KHNJHN81E30C455Y', 'Wednesday', '09:00', 30, 'CT101', 'R1');

3. Test your createDB.sql and populateDB.sql scripts.

4. Update/delete/insert check

4.1.UPDATE trainer

SET PhoneNo = '+390112333551'
WHERE SSN = 'KHNJHN81E30C455Y';

4.2.UPDATE schedule

SET GymRoom = 'S4'
 WHERE GymRoom = 'S2';

4.3.DELETE FROM course
 WHERE course.CId IN (SELECT schedule.CId
 FROM schedule
 GROUP BY schedule.CId
 HAVING COUNT(*)=1);

The row of table Course corresponding to the course with Cid CT101 is deleted. Also, thanks to
the DELETE ON CASCADE option, the row corresponding to the same course in table
Schedule is deleted.

4.4.DELETE FROM trainer
WHERE SSN = 'SMTPLA80N31B791Z';

Thanks to the DELETE ON CASCADE option, also the rows of the table Schedule containing
the SSN of the deleted trainer are canceled.

