
16/05/2020

1

2

16/05/2020

2

 GraphFrame provides the parallel implementation of
a set of state of the art algorithms for graph analytics
 Breadth first search

 Shortest paths

 Connected components

 Strongly connected component

 Label propagation

 PageRank

 ...
 Custom algorithms can be designed and implemented

3

 To run some expensive algorithms, set a
checkpoint directory that will store the state of
the job at every iteration

 This allow you to continue where you left off if
the job crashes

 Create such a folder to set the checkpoint
directory with:
 sc.setCheckpointDir(graphframes_ckpts_dir)
 graphframes_ckpts_dir is your new checkpoint folder
 sc is your SparkContext object

▪ Retrieve it from a SparkSession by using spark.sparkContext

4

16/05/2020

3

 Breadth-first search (BFS) is an algorithm for
traversing/searching graph data structures

 It finds the shortest path(s) from one vertex (or a
set of vertexes) to another vertex (or a set of
vertexes.

 It is used in many other algorithms

▪ Length of shortest paths

▪ Connected components

▪ ...

5

 The bfs(fromExpr, toExpr, edgeFilter=None
maxPathLength=10) method of the
GraphFrame class returns the shortest
path(s) from the vertexes matching
expression fromExpr expression to vertexes
matching expression toExpr

 If there are many vertexes matching fromExpr
and toExpr, only the couple(s) with the shortest
length is returned

6

16/05/2020

4

 fromExpr: Spark SQL expression specifying valid
starting vertexes for the execution of the BFS
algorithm
▪ E.g., to start from a specific vertex

▪ "id = [start vertex id]"

 toExpr: Spark SQL expression specifying valid target
vertexes for the BFS algorithm

 maxPathLength: Limit on the length of paths
(default = 10)

 edgeFilter: Spark SQL expression specifying edges
that may be used in the search (default None)

 7

 bfs() returns a DataFrame containing the
selected shortest path(s)

 If multiple paths are valid and their length is equal
to the shortest length, the returned DataFrame
will contain one Row for each path

 The number of columns of the returned
DataFrame is equal to

▪ (length of the shortest path*2)+1

8

16/05/2020

5

 Find the shortest path from Esther to Charlie
 Store the result in a DataFrame

9

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Find the shortest path from Esther to Charlie
 Store the result in a DataFrame

10

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

6

 Find the shortest path from Esther to Charlie
 Store the result in a DataFrame

 Content of the returned DataFrame
+------------------+-------------------+------------------ +------------------+--------------------+
| from | e0 | v1 | e1 | to |

+------------------+-------------------+------------------ +------------------+--------------------+
| [u5, Esther, 32] | [u5, u6, follow] | [u6, Fanny, 36] | [u6, u3, follow] | [u3, Charlie, 30] |

+------------------+-------------------+------------------ +------------------+--------------------+

11

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

12

16/05/2020

7

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 13

Search from vertex with name = "Esther" to vertex with name = "Charlie"

shortestPaths = g.bfs("name = 'Esther' ", "name = 'Charlie' ")

14

16/05/2020

8

 Find the shortest path from Alice to a user
who is 30 years old

 Store the result in a DataFrame

15

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Find the shortest path from Alice to a user
who is 30 years old

 Store the result in a DataFrame

16

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

9

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

17

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 18

16/05/2020

10

Find the shortest path from Alice to a user who is 30 years old

shortestPaths = g.bfs("name = 'Alice' ", "age= 30")

19

 Find the shortest path from any user who is
less than 31 years old to any user who is more
than 30 years old

20

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

11

 Find the shortest path from any user who is
less than 31 years old to any user who is more
than 30 years old

21

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

Two paths are selected in this case

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

22

16/05/2020

12

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 23

Find the shortest path from any user who is less than 31 years old
to any user who is more than 30 years old

shortestPaths = g.bfs("age<31", "age>30")

24

16/05/2020

13

 Find the shortest path from Alice to any user who is
less than 31 years old without using “follow” edges

25

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Find the shortest path from Alice to any user who is
less than 31 years old without using “follow” edges

26

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

14

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

27

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 28

16/05/2020

15

Find the shortest path from Alice to any user who is less
than 31 years old without using “follow” edges

shortestPaths = g.bfs("name = 'Alice' ", "age<31", "relationship<> 'follow' ")

29

 The shortest path method selects the length
of the shortest path(s) from each vertex to a
given set of landmark vertexes

 It uses the BFS algorithm for computing the
shortest paths

30

16/05/2020

16

 The shortestPaths(landmarks) method of
the GraphFrame class returns the length of
the shortest path(s) from each vertex to a
given set of landmarks vertexes

 For each vertex, one shortest path for each
landmark vertex is computed and its length is
returned

 landmarks: list of IDs of landmark vertexes

▪ E.g., [‘u1’, ‘u4’]

31

 shortestPaths() returns a DataFrame that

 Contains one record/Row for each distinct vertex
of the input graph

▪ Also for the non-connected ones

 Is characterized by the following columns

▪ One column for each attribute of the vertexes

▪ distances (type map)

▪ For each landmark lm it contains one pair (ID lm: length shortest
path from the vertex of the current record to lm)

32

16/05/2020

17

 Find for each user the length of the shortest
path to user u1 (i.e., Alice)

33

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Find for each user the length of the shortest
path to user u1 (i.e., Alice)

34

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

Vertex Distance to u1

u1 0

u2 -

u3 -

u4 1

u5 2

u6 -

u7 -

16/05/2020

18

 Find for each user the length of the shortest
path to user u1 (i.e., Alice)

 Content of the returned DataFrame
 +---+--------+-----+------------+
 | id | name | age | distances |
 +---+--------+-----+------------+
u1	Alice	34	[u1 -> 0]
u2	Bob	36	[]
u3	Charlie	30	[]
u4	David	29	[u1 -> 1]
u5	Esther	32	[u1 -> 2]
u6	Fanny	36	[]
u7	Gabby	60	[]
 +---+--------+-----+------------+

 35

 Find for each user the length of the shortest
path to user u1 (i.e., Alice)

 Content of the returned DataFrame
 +---+--------+-----+------------+
 | id | name | age | distances |
 +---+--------+-----+------------+
u1	Alice	34	[u1 -> 0]
u2	Bob	36	[]
u3	Charlie	30	[]
u4	David	29	[u1 -> 1]
u5	Esther	32	[u1 -> 2]
u6	Fanny	36	[]
u7	Gabby	60	[]
 +---+--------+-----+------------+

 36

Data type: map
- It stores a set of pairs (Key: Value)

16/05/2020

19

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

37

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 38

16/05/2020

20

Find for each user the length of the shortest path to user u1

shortestPaths = g.shortestPaths(["u1"])

39

 Find for each user the length of the shortest
path to users u1 (Alice) and u4 (David)

40

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

21

 Find for each user the length of the shortest
path to users u1 (Alice) and u4 (David)

41

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

Vertex Distance
to u1

Distance
to u4

u1 0 2

u2 - -

u3 - -

u4 1 0

u5 2 1

u6 - -

u7 - -

 Find for each user the length of the shortest
path to users u1 (Alice) and u4 (David)

 Content of the returned DataFrame
 +---+--------+-----+------------------------+
 | id | name | age | distances |
 +---+--------+-----+------------------------+
u1	Alice	34	[u1 -> 0, u4 -> 2]
u2	Bob	36	[]
u3	Charlie	30	[]
u4	David	29	[u1 -> 1, u4 -> 0]
u5	Esther	32	[u1 -> 2, u4 -> 1]
u6	Fanny	36	[]
u7	Gabby	60	[]
 +---+--------+-----+------------------------+

 42

16/05/2020

22

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

43

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 44

16/05/2020

23

Find for each user the length of the shortest paths to users u1 and u4

shortestPaths = g.shortestPaths(["u1", "u4"])

45

 A connected component of a graph is a
subgraph sg such that

 Any two vertexes in sg are connected to each
other by one or more edges

 The set of vertexes in sg is not connected to any
additional vertexes in the original graph

 Direction of edges is not considered

46

16/05/2020

24

 Two connected components

47

 Three connected components

48

16/05/2020

25

 The connectedComponents() method of the
GraphFrame class returns the connected
components of the input graph

 It is an expensive algorithm

 It requires setting a Spark checkpoint directory

49

 connectedComponents() returns a
DataFrame that

 Contains one record/Row for each distinct vertex
of the input graph

 Is characterized by the following columns

▪ One column for each attribute of the vertexes

▪ component (type long)
▪ It is the identifier of the connected component to which the

current vertex has been assigned

50

16/05/2020

26

 Print on the stdout the number of connected
components of the following graph

51

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Print on the stdout the number of connected
components of the following graph

52

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

The are two connected
components on this graph

16/05/2020

27

 Print on the stdout the number of connected
components of the following graph

 Content of the DataFrame used to store the
two identified connected components

53

+---+---------+----+-------------------+

| id | name |age | component |
+---+---------+----+-------------------+
| u6 | Fanny | 36 | 146028888064 |

u1	Alice	34	146028888064
u3	Charlie	30	146028888064
u5	Esther	32	146028888064

u2	Bob	36	146028888064
u4	David	29	146028888064
u7	Gabby	60	1546188226560

+---+---------+----+-------------------+

 Print on the stdout the number of connected
components of the following graph

 Content of the DataFrame used to store the
two identified connected components

54

+---+---------+----+-------------------+

| id | name |age | component |
+---+---------+----+-------------------+
| u6 | Fanny | 36 | 146028888064 |

u1	Alice	34	146028888064
u3	Charlie	30	146028888064
u5	Esther	32	146028888064

u2	Bob	36	146028888064
u4	David	29	146028888064
u7	Gabby	60	1546188226560

+---+---------+----+-------------------+

Vertexes of the first component

Vertexes of the second component

16/05/2020

28

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

55

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 56

16/05/2020

29

Set checkpoint folder
sc.setCheckpointDir("tmp_ckpts")

Run the algorithm
connComp=g.connectedComponents()

Count the number of components
nComp=connComp.select("component").distinct().count()

print("Number of connected components: ", nComp)

57

 A directed subgraph sg is called strongly
connected if every vertex in sg is reachable
from every other vertex in sg

 For undirected graph, connected and strongly
connected components are the same

58

16/05/2020

30

 A graph with 3 strongly connected
subgraphs/components

59

 The stronglyConnectedComponents()
method of the GraphFrame class returns the
strongly connected components of the input
graph

 It is an expensive algorithm

▪ Better to run on a cluster with yarn scheduler even with
small graphs

 It requires setting a Spark checkpoint directory

60

16/05/2020

31

 stronglyConnectedComponents() returns a
DataFrame that

 Contains one record/Row for each distinct vertex
of the input graph

 Is characterized by the following columns

▪ One column for each attribute of the vertexes

▪ component (type long)
▪ It is the identifier of the strongly connected component to which

the current vertex has been assigned

61

 Print on the stdout the number of strongly
connected components of the input graph

62

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

32

 Print on the stdout the number of strongly
connected components of the input graph

63

The are four connected
components on this graph

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Print on the stdout the number of strongly
connected components of the input graph

 Content of the DataFrame used to store the
identified strongly connected components

64

+---+---------+----+-------------------+

| id | name |age | component |
+---+---------+----+-------------------+
| u3 | Charlie | 30 | 146028888064 |

u2	Bob	36	146028888064
u1	Alice	34	498216206336
u5	Esther	32	498216206336

u4	David	29	498216206336
u6	Fanny	36	1090921693184
u7	Gabby	60	1546188226560

+---+---------+----+-------------------+

16/05/2020

33

 Print on the stdout the number of strongly
connected components of the input graph

 Content of the DataFrame used to store the
identified strongly connected components

65

+---+---------+----+-------------------+

| id | name |age | component |
+---+---------+----+-------------------+
| u3 | Charlie | 30 | 146028888064 |

u2	Bob	36	146028888064
u1	Alice	34	498216206336
u5	Esther	32	498216206336

u4	David	29	498216206336
u6	Fanny	36	1090921693184
u7	Gabby	60	1546188226560

+---+---------+----+-------------------+

Vertexes of the first SCC

Vertexes of the fourth component

Vertexes of the second SCC

Vertexes of the third component

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

66

16/05/2020

34

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 67

Set checkpoint folder
sc.setCheckpointDir("tmp_ckpts")

Run the algorithm
strongConnComp = g.stronglyConnectedComponents(maxIter=10)

Count the number of strongly connected components
nComp=strongConnComp.select("component").distinct().count()

print("Number of strongly connected components: ", nComp)

68

16/05/2020

35

 Label Propagation is an algorithm for
detecting communities in graphs

 Like clustering but exploiting connectivity

 Convergence is not guaranteed

 One can end up with trivial solutions

69

 The Label Propagation algorithm

 Each vertex in the network is initially assigned to
its own community

 At every step, vertexes send their community
affiliation to all neighbors and update their state
to the mode community affiliation of incoming
messages

70

16/05/2020

36

 The labelPropagation(maxIter) method of
the GraphFrame class runs and returns the
result of the label propagation algorithm

 Parameter maxIter:

▪ The number of iterations to run

71

 labelPropagation() returns a DataFrame that

 Contains one record/Row for each distinct vertex
of the input graph

 Is characterized by the following columns

▪ One column for each attribute of the vertexes

▪ label (type long)

▪ It is the identifier of the community to which the current vertex
has been assigned

72

16/05/2020

37

 Split in groups the vertexes of the graph by
using the label propagation algorithm

73

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

 Split in groups the vertexes of the graph by
using the label propagation algorithm

74

Result returned by one run of the
algorithm.
Pay attention that convergence is
not guarantee.
Different results for different runs.

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

38

 Split in groups the vertexes of the graph by
using the label propagation algorithm

 Content of the DataFrame used to store the
identified communities

75

+---+---------+----+-------------------+

| id | name |age | label |
+---+---------+----+-------------------+
| u3 |Charlie | 30| 146028888064 |

u4	David	29	498216206336
u1	Alice	34	498216206336
u5	Esther	32	498216206337

u7	Gabby	60	1546188226560
u2	Bob	36	1606317768704
u6	Fanny	36	1606317768704

+---+---------+----+-------------------+

 Split in groups the vertexes of the graph by
using the label propagation algorithm

 Content of the DataFrame used to store the
identified communities

76

+---+---------+----+-------------------+

| id | name |age | label |
+---+---------+----+-------------------+
| u3 |Charlie | 30| 146028888064 |

u4	David	29	498216206336
u1	Alice	34	498216206336
u5	Esther	32	498216206337

u7	Gabby	60	1546188226560
u2	Bob	36	1606317768704
u6	Fanny	36	1606317768704

+---+---------+----+-------------------+

Vertexes of the first community

Vertexes of the fourth community

Vertexes of the second community

Vertexes of the third community

16/05/2020

39

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

77

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 78

16/05/2020

40

Run the label propagation algorithm
labelComm = g.labelPropagation(10)

79

 PageRank is the original famous algorithm
used by the Google Search engine to rank
vertexes (web pages) in a graph by order of
importance

 For the Google search engine

▪ Vertexes are web pages in the World Wide Web,

▪ Edges are hyperlinks among web pages

 It assigns a numerical weighting (importance) to
each node

80

16/05/2020

41

 It computes a likelihood that a person
randomly clicking on links will arrive at any
particular web page

 For a high PageRank, it is important to

 Have many in-links

 Be liked by relevant pages
(pages characterized by a
high PageRank)

81

 Basic idea

 Each link’s vote is proportional to the importance
of its source page p

 If page p with importance PageRank(p) has n out-
links, each out-link gets PageRank(p)/n votes

 Page p’s importance is the sum of the votes on its
in-links

82

16/05/2020

42

1. # Initialize each page’s rank to 1.0
For each p in pages set PageRank(p) to 1.0

2. Iterate for max iterations

a. Page p sends a contribution
PageRank(p)/numOutLinks(p) to its neighbors
(the pages it links)

b. Update each page’s rank PageRank(p) to
sum(received contributions)

c. Go to step 2

83

 The PageRank algorithm simulates the
random walk of a user on the web

 At each step of the random walk, the random
surfer has two options:

 With probability 1-α, follow a link at random
among the ones in the current page

 With probability α, jump to a random page

84

16/05/2020

43

1. # Initialize each page’s rank to 1.0
For each p in pages set PageRank(p) to 1.0

2. Iterate for max iterations

a. Page p sends a contribution
PageRank(p)/numOutLinks(p) to its neighbors
(the pages it links)

b. Update each page’s rank PageRank(p) to
α + (1- α) * sum(received contributions)

c. Go to step 2

85

 α = 0.15

 Initialization: PageRange(p) = 1.0 p

86

p3

p1

p4

p2
1.0

1.0

1.0
1.0

16/05/2020

44

 Iteration #1

87

p3

p1

p4

p2
0.433

0.575

1.708
0.433

 Iteration #2

88

p3

p1

p4

p2
0.313

0.334

0.865
0.313

16/05/2020

45

 Iteration #3

89

p3

p1

p4

p2
0.245

0.283

0.644
0.245

 Iteration #4

90

p3

p1

p4

p2
0.230

0.254

0.542
0.230

16/05/2020

46

 Iteration #5

91

p3

p1

p4

p2
0.222

0.248

0.515
0.222

 Iteration #50

92

p3

p1

p4

p2
0.219

0.243

0.498
0.219

16/05/2020

47

 The pageRank() method of the GraphFrame
class runs the PageRank algorithm on the
input graph

93

 Parameters
 resetProbability

▪ Probability of resetting to a random vertex (probability α
associated with random jumps)

 maxIter
▪ If set, the algorithm is run for a fixed number of iterations
▪ This may not be set if the tol parameter is set

 Tol
▪ If set, the algorithm is run until the given tolerance
▪ This may not be set if the numIter parameter is set

 sourceId (optional)
▪ The source vertex for a personalized PageRank

 94

16/05/2020

48

 pageRank() returns a new GraphFrame that

 Contains the same vertexes and edges of the input
graph

 All the vertexes of the new graph are characterized by
one new attribute, called “pagerank”, that stores the
PageRank of the vertexes

 The edges of the new graph are characterized by one
new attribute, called “weight”, that stores the weight
(PageRank contribution) propagated through that
edge

95

 Apply the PageRank algorithm on the
following graph and select the user
associated with the highest PageRank value

96

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

49

 Apply the PageRank algorithm on the
following graph and select the user
associated with the highest PageRank value

97

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

2.71
2.67 0.45

0.36 0.32 0.32 0.17

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

98

16/05/2020

50

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 99

Run the PageRank algorithm
pageRanks = g.pageRank(maxIter=30)

Select the maximum value of PageRank
maxPageRank = pageRanks.vertices.agg({"pagerank":"max"})\
 .first()["max(pagerank)"]

Select the user with the maximum PageRank
pageRanks.vertices.filter(pageRanks.vertices.pagerank==maxPageRank)\
 .show()

100

16/05/2020

51

 GraphFrames provides primitives for
developing yourself other graph algorithms

 It is based on message passing approach

 The two key components are:

▪ aggregateMessages

▪ Send messages between vertexes, and aggregate messages for
each vertex

▪ Joins
▪ Join message aggregates with the original graph

101

 For each user, compute the sum of the ages
of adjacent users (count many times the
same adjacent user if there are many links)

102

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

16/05/2020

52

 For each user, compute the sum of the ages
of adjacent users (count many times the
same adjacent user if there are many links)

103

Vertex Distance to u1

u1 97

u2 94

u3 108

u4 66

u5 99

u6 62

u1
Alice,

34

u6
Fann

y,36

u5
Esth

er,

32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabb

y,60

friend

friend

friend
friend

follow

follow follow

follow

from graphframes import GraphFrame
from pyspark.sql.functions import sum as sqlsum
from graphframes.lib import AggregateMessages

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

104

16/05/2020

53

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 105

For each user, sum the ages of the adjacent users

Send the age of each destination of an edge to its source
msgToSrc = AggregateMessages.dst["age"]

Send the age of each source of an edge to its destination
msgToDst = AggregateMessages.src["age"]

Aggregate messages
aggAge = g.aggregateMessages(sqlsum(AggregateMessages.msg),\
 sendToSrc=msgToSrc,\
 sendToDst=msgToDst)
#Show result
aggAge.show()

106

