Graph Analytics in Spark

Algorithms over graphs

GraphFrame provides the parallel implementation of
aset of state of the art algorithms for graph analytics

Breadth first search

Shortest paths

Connected components

Strongly connected component

Label propagation

PageRank

Ctiétom algorithms can be designed and implemented

Breadth first search

16/05/2020

Graph Algorithms with
GraphFrames

..

Checkpoint directory

To run some expensive algorithms, set a
checkpoint directory that will store the state of
thejob at every iteration
This allow you to continue where you left off if
the job crashes
Create such a folder to set the checkpoint
directory with:
sc.setCheckpointDi(graphframes_ckpts_dir)
graphframes_ckpts_dirisyournew checkpoint folder
scis your SparkContext object
Retrieve it from a SparkSession by using spark.sparkContext

Breadth first search

Breadth-first search (BFS) is an algorithm for
traversing/searching graph data structures
It finds the shortest path(s) from one vertex (or a
set of vertexes) to another vertex (or a set of
vertexes.
Itis used in many other algorithms
Length of shortest paths
Connected components

The bfs(fromExpr, toExpr, edgeFilter=None
maxPathLength=10 method of the
GraphFrame class returns the shortest
path(s)from the vertexes matching
expression fromExpr expression to vertexes
matching expression toExpr

If there are many vertexes matching fromExpr

and toExpr, only the couple(s) with the shortest
length is returned

Breadth first search

:Spark SQL expression specifying valid
starting vertexes for the execution of the BFS
algorithm

E.g., to start from a specific vertex
"id =[start vertex id]"
:Spark SQL expression specifying valid target
vertexes forthe BFS algorithm

:Limit on the length of paths
(default=10)

: Spark SQL expression specifying edges
that may be used in the search (default None)

Breadth first search: Example 1

16/05/2020

Breadth first search

returns a DataFrame containing the
selected shortest path(s)
If multiple paths are valid and their length is equal
to the shortest length, the returned DataFrame
will contain one Row for each path
The number of columns of the returned
DataFrame is equal to
(length of the shortest path*2)+1

Find the shortest path from Esther to Charlie
Store the result in a DataFrame

friend follow.
friend
friend follow follow

©00660

friend follow

Breadth first search: Example 1

Breadth first search: Example 1

Find the shortest path from Esther to Charlie
Store the result in a DataFrame

friend follow

QMQ

friend follow follow

e @

friend follow

Breadth first search: Example 1

Find the shortest path from Esther to Charlie
Store the result in a DataFrame

Content of the returned DataFrame

+ + + + + +
| from | e0 | vl | el | to |
+ + + + + +
| [uS, Esther, 32] | [u5, u6, follow] | [u6, Fanny, 36]| [u6, u3, follow] | [u3, Charlie, 30] |
+ + + + + +

fromgraphframes import GraphFrame

#Vertex DataFrame
v=spark.createDataFrame([("ul", "Alice", 34),\
("u2","Bob", 36),\
"u3", "Charlie", 30),\
"u4","David", 29),\
"u5", "Esther", 32),\
"u6", "Fanny", 36),\
"u7", "Gabby", 60)],\
["id", "name", "age"])

Breadth first search: Example 1

#Edge DataFrame
e=spark.createDataFrame([("ul","u2","fri

(
¢
(
¢
¢
¢
E
['src”, "dst", "relationship"])

#Create the graph
g=GraphFrame(v, e)

Breadth first search: Example 2

Find the shortest path from Alice to a user
whoiis 30 years old
Store the resultin a DataFrame

friend follow.

ONENS

friend
friend follow follow

© 66

friend follow

16/05/2020

Breadth first search: Example 1

Search from vertex with name = "Esther" to vertex with name = "Charlie"

shortestPaths =g.bfs("name = 'Esther'", "name = 'Charlie' ")

Breadth first search: Example 2

fromgraphframes import GraphFrame

#Vertex DataFrame

v =spark.createDataFrame([(“ul", "Alice", 34),\
("u2","Bob", 36),\
("u3", "Charlie", 30),\
("u4","David", 29),\
("u5", "Esther”, 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

Breadth first search: Example 2

Find the shortest path from Alice to a user
who is 30 years old
Store the resultin a DataFrame

friend follow

friend
friend follow follow

© 6060

friend follow

Breadth first search: Example 2

#Edge DataFrame
e=spark.createDataFrame([("ul","u2","friend"),\
("u2","u3", "follow"),\
"u3","u2", "follow"),\
"u6","u3", "follow"),\
"u5","u6", "follow"),\
"u5", "u4", "friend"),\
"u4","ul", "“friend"),\
("ul","us", "friend")],\
["src", "dst", "relationship"])

#Create the graph
g=GraphFrame(v, e)

Breadth first search: Example 2

#Find the shortest path from Alice to a user who is 30 years old

shortestPaths = g.bfs("name = ‘Alice' ", "age= 30")

16/05/2020

Breadth first search: Example 3

Find the shortest path from any user who is
less than 31 years old to any user who is more

than 30 years i
Q@ 6O
@006

Breadth first search: Example 3

Breadth first search: Example 3

Find the shortest path from any user who is
less than 31 years old to any user who is more

than 30 years old
friend follow.
friend
friend follow follow
@00
friend follow

fromgraphframes import GraphFrame

#Vertex DataFrame
v=spark.createDataFrame([("ul", "Alice", 34),\
(" ob",36),\

"Charlie", 30),\
"David", 29),\
"Esther", 32),\
"Fanny", 36),\

("u7", "Gabby", 60)],\
["id", "name", "age"])

c

Breadth first search: Example 3

Breadth first search: Example 3

#Edge DataFrame

e =spark.createDataFrame([("ul","u2","friend"),\
("u2","u3", "follow"),\
("u3","u2", "follow"),\
("u", "u3", "follow"),\
("u5","us", "follow"),\
("us5","ug", “friend"),\
("ug","u1", "friend"),\
("u1","us5", "“friend")],\

["src", "dst", "relationship"])

#Create the graph
g=GraphFrame(v, e)

#Find the shortest path from any user whois less than 31 years old
to any user whois more than 30 years old

shortestPaths =g.bfs("age<31","age>30")

Breadth first search: Example 4

16/05/2020

Find the shortest path from Alice to any user who is

1A0O OEAT aox UAAOCO T1A
@00

friend
friend follow follow

©006606

friend follow

Breadth first search: Example 4

Breadth first search: Example 4

Find the shortest path from Alice to any user who is
1 A0OO OEAT ax UAAOO 1T1A

friend follow
friend
friend follow follow

@

friend follow

from graphframes import GraphFrame

#Vertex DataFrame
v =spark.createDataFrame([("

Breadth first search: Example 4

#Find the shortest path from Alice to any user whoiis less L .
Yy OEAT QX UAAOO 11 A xEOEI OO OOEI ¢

shortestPaths = g.bfs("name = ‘Alice' ", "age<31", "relationship<>‘follow" *)

Breadth first search: Example 4

#Edge DataFrame

e=spark.createDataFrame([("ul","u2","friend"),\
("u2". "u3", "follow")\
" '

o .
["src", "dst", "relationship"])

#Create the graph
g=GCraphFrame(v, e)

Shortest path

The shortest path method selects the length
of the shortest path(s) from each vertex to a
given set of landmark vertexes

It uses the BFS algorithm for computing the
shortest paths

Shortest path

Shortest path

16/05/2020

The method of
the GraphFrame class returns the

from each vertex toa
given set of vertexes

For each vertex, one shortest path for each
landmark vertex is computed and its length is
returned
:list of IDs of landmark vertexes
%8C8h rOOxé6h OO &Y

Shortest path: Example 1

returns a DataFrame that

Contains one record/Row for each distinct vertex

of the input graph
Also for the non-connected ones

Is characterized by the following columns
One column for each attribute of the vertexes
distances (type map)

Foreach landmark Im it contains one pair (ID Im: length shortest

path from the vertex of the currentrecord to Im)

Shortest path: Example 1

Find for each user the length of the shortest
path to user ul (i.e., Alice)

friend follow.
friend
fnend follow follow
friend follow

Shortest path: Example 1

Find for each user the length of the shortest
path to user ul (i.e., Alice)

friend follow
f\ A ul 0
& L> & . '
u3 =

friend

fnend follow follow ud 1
us 2
ué =
u?7 =

friend follow

Shortest path: Example 1

Find for each user the length of the shortest
path to user ul (i.e., Alice)

Content of the returned DataFrame

B L e .
lid | name |age | distances |
B L e .
Jut] Ahce |34 |[u1->0] |
|u2| Bob (36 | I
|u3|Charlie |30 | []

|u4| David |29 [[ul->1]
|u5 |Esther |32 |[ul->2]
|u| Fanny|36 | [I |

u7| GabbylGO \ []
Bt B -t

Find for each user the length of the shortest
path to user ul (i.e., Alice)

Content of the returned DataFrame

[U S —
lid | name |age | distances |
B St
\u1|AI|ce |34 |[u1 >0] t
u2	Bob	36	
u3	Charlie	30	[]
u4	David	29	[ul->1]
u5	Esther	32	[ul->2]
u6	Fanny	36	[
\u7|Gabby\60 | [] \

L e S

Shortest path: Example 1

16/05/2020

Shortest path: Example 1

fromgraphframes import GraphFrame

Vertex DataFrame

v=spark.createDataFrame([(“ul", "Alice", 34),\
("u2","Bob", 36),\
("u3", "Charlie", 30),\
("u4", "David", 29),\
("u5", "Esther”, 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

Shortest path: Example 1

#Find for each user the length of the shortest path to userul

shortestPaths = g.shortestPaths(["u1"])

#Edge DataFrame
e=spark.createDataFrame([("ul","u2","friend"),\
("u2","u3", "follow"),\
"u3","u2", "follow"),\
"u6","u3", "“follow"),\
"u5","u6", "follow"),\
"u5", "u4", "friend"),\
"ud","ul", "friend"),\
("ul1","us", "friend")],\
["src”, "dst", "relationship"])

#Create the graph
g=GraphFrame(v, e)

Shortest path: Example 2

Shortest path: Example 2

Find for each user the length of the shortest
path to users ul (Alice) and u4 (David)

friend follow

006

friend
friend follow follow

O000

friend follow

Shortest path: Example 2

Find for each user the length of the shortest
path to users ul (Alice) and u4 (David)

friend follow,
N
/_\)) < ut 0
\\/ 2 :
<

friend u3 =

friend follow follow
ud il
q </w Q Q " :
_/ N ué -

friend follow

Find for each user the length of the shortest
path to users ul (Alice) and u4 (David)

Content of the returned DataFrame

|id | name |age | distances

|
lul| Alice |34 |[ul->0,u4->2] |
[u2| Bob |36 | [I
u3	Charlie [30	[]	
u4	David	29	[ul->1,u4->0]
uS	Esther	32	[ul->2,u4->1]
u	Fanny	36	[]
[u7] Gabby [60 | [] I

Shortest path: Example 2

Shortest path: Example 2

16/05/2020

fromgraphframes import GraphFrame

Vertex DataFrame

Shortest path: Example 2

#Find for each user the length of the shortest paths to users ul and u4

shortestPaths = g.shortestPaths(["ul","u4"])

#Edge DataFrame
e =spark.createDataFrame([("ul","u2","fri

¢

["src”, " ”,’"relationship”])

#Create the graph
g=GraphFrame(v, e)

a4

Connected components

Connected components

Aconnected component of agraph is a
subgraph sgsuch that

Any two vertexes in sg are connected to each
other by one or more edges

The set of vertexes in sg is not connected to any
additional vertexes in the original graph

Direction of edges is not considered

Two connected components

Connected
Compenert

Connected components

The method of the
GraphFrame class returns the connected
components of the input graph

Itis an expensive algorithm

It requires setting a Spark checkpoint directory

16/05/2020

Connected components

returns a
DataFrame that
Contains one record/Row for each distinct vertex
of the input graph
Is characterized by the following columns
One column for each attribute of the vertexes

component (typelong)
Itis the identifier of the connected component to which the
currentvertex has been assigned

Connected components: Example

Connected components: Example

Print on the stdout the number of connected
components of the following graph

friend follow.

Q006

friend
friend follow follow

©00660

friend follow

Print on the stdout the number of connected
components of the following graph

friend follow
friend
friend follow follow
friend follow

Connected components: Example

Connected components: Example

Print on the stdout the number of connected
components of the following graph

Content of the DataFrame used to store the

P — .
|u6| Fanny |36 |
Jul| Alice |34 |146028888064 |
|u3|Charlie |30 | 146028888064 |
|uS| Esther |32 | 146028888064 |
|u2| Bob |36 |146028888064
|u4| David |29 |146028888064 |
|u7| Gabby |60 [1546188226560]
P S E—— +

Print on the stdout the number of connected
components of the following graph

Content of the DataFrame used to store the
two identified ¢

Jid | name Jage| com
R oo

uB	Fanny	36	146028888064
ul	Alice	34	146028888064
u3[Charlie	30	146028888064	
u5	Esther	32	146028888064
u2	Bob	36	146028888064
u4	David	29	146028888064
u7] Gabby	60	1546188226560	

Connected components: Example

fromgraphframes import GraphFrame

Vertex DataFrame

Connected components: Example

#Set checkpoint folder
sc.setCheckpointDir(“tmp_ckpts")

#Run the algorithm
connComp=g.connectedComponents()

#Countthe number of components
nComp=connComp.select("component”).distinct().count()

print("Number of connected components: ", nComp)

16/05/2020

Connected components: Example

#Edge DataFrame
e =spark.createDataFrame([("ul","u2","fri

¢

["src”, " ”,’"relationship”])

#Create the graph
g=GraphFrame(v, e)

Strongly Connected components

Agraph with 3 strongly connected
subgraphs/components

Strongly Connected components

Adirected subgraph sg is called strongly
connected if every vertex in sgis reachable
from every other vertex in

For undirected graph, connected and strongly
connected components are the same

Strongly Connected components

The
method of the GraphFrame class returns the
strongly connected components of the input
graph

Itis an expensive algorithm

Better to run on a cluster with yarn scheduler even with
small graphs

It requires setting a Spark checkpoint directory

10

Strongly Connected components

returnsa
DataFrame that

Contains one record/Row for each distinct vertex
of the input graph
Is characterized by the following columns
One column for each attribute of the vertexes
component (type long)

Itis the identifier of the strongly connected component to which
thecurrent vertex has been assigned

Strongly Connected components:

Example

Print on the stdout the number of strongly
connected components of the input graph

friend follow

friend

friend follow

friend follow

Strongly Connected components:
Example

Print on the stdout the number of strongly
connected components of the input graph

friend follow

800

friend
friend follow follow

O00O0

friend follow

16/05/2020

Strongly Connected components:
Example

Print on the stdout the number of strongly
connected components of the input graph

Content of the DataFrame used to store the
identified strongly connected components

P P
Jid | name |age| component |
P PR +
| u3| Charlie| 30 | 146028888064 |
|u2| Bob |36 |146028888064 |
[ul| Alice |34 [498216206336 |
|uS| Esther |32 | 498216206336 |
lud| David |29 1498216206336 |
|u6| Fanny |36 | 1090921693184]
|u7| Gabby |60 | 1546188226560
e — e — +

Strongly Connected components:
Example

Print on the stdout the number of strongly
connected components of the input graph

Content of the DataFrame used to store the
identified strongly connected components

R N +

|id | name |age| ct

b N — - -
|u3| Charlie| 30 |146028888064
Ju2| Bob |36 |146028888064 |
Jul| Alice |34 |498216206336 |
| US| Esther |32 | 498216206336 |
|ud| David | 29 |498216206336 |
|u6| Fanny |36 |1090921693184]
|u7| Gabby | 60 |1546188226560)
R S +

Strongly Connected components:

Example

fromgraphframes import GraphFrame

#Vertex DataFrame
v=spark.createDataFrame([("ul", "Alice", 34),\
("u2","Bob", 36),\
"u3", "Charlie", 30),\
"u4","David", 29),\
"u5", "Esther", 32),\
"u6", "Fanny", 36),\
"u7", "Gabby", 60)],\
["id", "name", "age"])

11

Strongly Connected components:

#Edge DataFrame

("u6", "u3", "follow"),\
("u5","u6", "follow"),\
("u5","ud", “friend"),\
("ug","u1", "friend"),\
("ul","u5", "“friend")],\
['src”, "dst", "relationship"])

#Create the graph
g=GraphFrame(v, e)

16/05/2020

Strongly Connected components:
Example

Set checkpoint folder

sc.setCheckpointDir("tmp_ckpts")

#Run the algorithm
strongConnComp =g.stronglyConnectedComponents(max|ter=10)

Count the number of strongly connected components
nComp=strongConnComp.select("component").distinct().count()

print("Number of strongly connected components: *, nComp)

Label propagation

Label Propagation is an algorithm for
detecting communities in graphs
Like clustering but exploiting connectivity
Convergence is not guaranteed
One can end up with trivial solutions

Label propagation

The Label Propagation algorithm

Each vertex in the network is initially assigned to
its own community

Atevery step, vertexes send their community
affiliation to all neighbors and update their state
to the mode community affiliation of incoming
messages

Label propagation

ThelabelPropagation(maxlter) method of
the GraphFrame class runs and returns the
result of the label propagation algorithm
Parameter maxiter:
The number of iterations to run

Label propagation

labelPropagation()returns a DataFrame that
Contains one record/Row for each distinct vertex
of the input graph
Ischaracterized by the following columns
One column for each attribute of the vertexes

label (type long)
Itis the identifier of the community to which the current vertex
has been assigned

12

Label propagation: Example

Label propagation: Example

16/05/2020

Splitin groups the vertexes of the graph by
using the label propagation algorithm

friend follow

8006

friend
friend follow follow

©006606

friend follow

Label propagation: Example

Splitin groups the vertexes of the graph by
using the label propagation algorithm

friend follow
convergence Is
not guarantee
friend
friend follow follow
friend follow

Label propagation: Example

Splitin groups the vertexes of the graph by
using the label propagation algorithm

Content of the DataFrame used to store the
identified communities

I

. e
u3	Charlie	30 146028888064	
u4	David	29	498216206336
ul	Alice	34	498216206336
US	Esther	32	498216206337
u7	Gabby	60 [1546188226560]	
u2	Bob	36	1606317768704
uB	Fanny	36	1606317768704

A oo +

Label propagation: Example

Splitin groups the vertexes of the graph by
using the label propagation algorithm

Content of the DataFrame used to store the
identified communities

S — — —

|
—+
| u3|Charlie |30] 146028888064
ud	David	29 498216206336	
uL	Alice	34	498216206336
us	Esther	32	498216206337

7| Gabby | 60 |1546188226560]
|u2| Bob |36 |1606317768704 |
|uB| Fanny |36 [1606317768704 |
o —— S —— +

Label propagation: Example

fromgraphframes import GraphFrame

#Vertex DataFrame

v =spark.createDataFrame([(“ul", "Alice", 34),\
("u2","Bob", 36),\
("u3", "Charlie", 30),\
("u4","David", 29),\
("u5", "Esther”, 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

#Edge DataFrame
e=spark.createDataFrame([("ul","u2","friend"),\
("u2","u3", "follow"),\
"u3","u2", "follow"),\
"u6","u3", "follow"),\
"u5","u6", "follow"),\
"u5", "u4", "friend"),\
"u4","ul", "“friend"),\
("ul","us", "friend")],\
["src", "dst", "relationship"])

#Create the graph
g=GraphFrame(v, e)

13

Label propagation: Example

#Run the label propagation algorithm
labelComm = g.labelPropagation(10)

PageRank

Itcomputes a likelihood that a person
randomly clicking on links will arrive at any
particular web page
For a high PageRank, it isimportant to
Have many in-links }
Be liked by relevant pages . 9 -
(pages characterized by a B “‘t v
high PageRank) |

Lo 81 A
% m

PageRank: Simple recursive

formulation

#initialize AAAE DACAGO OAIl
Foreach p in pages set PageRank(p) to 1.0
Iterate for max iterations
Page p sends a contribution
PageRank(p)/numOutLinks(p) to its neighbors
(the pages it links)
Update AAAE D A QadRadk(pDtd 1 E
sum(received contributions)
Go to step 2

16/05/2020

PageRank

PageRank is the original famous algorithm
used by the Google Search engine to rank
vertexes (web pages) in a graph by order of
importance
For the Google search engine
Vertexes are web pagesin the World Wide Web,
Edges are hyperlinksamong web pages
It assigns a numerical weighting (importance) to
each node

PageRank

Basicidea
%AAE 1T ETESO O OAmpéréanced O]
of its source page

If page p with importance has n out-
links, each out-link gets votes
Page pd i@portance is the sum of the votes on its
in-links

PageRank with Random jumps

The PageRank algorithm simulates the
random walk of a user on the web
At each step of the random walk, the random
surfer has two options:
With probability 1-J, follow a link at random
among the ones in the current page
With probability |, jump to a random page

14

PageRank with Random jumps

#InitializeAAAE DACASO OAIl
Foreach p in pages set PageRank(p) to 1.0
Iterate for max iterations

Page p sends a contribution

PageRank(p)/numOutLinks(p) to its neighbors

(the pages it links)

Update AAAE D A QaldRDk(ppPtA T E

1 +(1- 1) * sum(received contributions)

Gotostep 2

16/05/2020

PageRank: Example

1=0.15
Initialization: PageRange(p) =1.0" p

XX
\0-0-

PageRank: Example

Iteration #1

0.433

1.708

OO

0.57@

PageRank: Example

Iteration #2

0.313

0.865

OO

0.336

PageRank: Example PageRank: Example

Iteration #3

0.245

0.644

OO

0.28@

Iteration #4

0.230

0.542

o0

o.zs@

15

PageRank: Example

Iteration #5

PageRank

The method of the GraphFrame
class runs the PageRank algorithm on the
input graph

PageRank

returns a new GraphFrame that
Contains the same vertexes and edges of the input
graph
Allthe vertexes of the new graph are characterized by
iTA T Ax AOOmgeAnRONn hOAAD 1J
PageRank of the vertexes
The edges of the new graph are characterized by one
T Ax AOOOE A B 6 AthaGsioksthe defght O
(PageRank contribution) propagated through that
edge

16/05/2020

PageRank: Example

Iteration #50

PageRank

Parameters

resetProbability

Probability of resetting to a random vertex (probability
associated with random jumps)

maxliter
If set, the algorithm is run for a fixed number of iterations
This may not be set if the tol parameter is set
Tol
If set, the algorithm is run until the given tolerance
This may notbe set if the numlter parameter is set
sourceld (optional)
The source vertex fora personalized PageRank

PageRank: Example

Apply the PageRank algorithm on the
following graph and select the user
associated with the highest PageRank value

friend follow

@00

friend
friend follow follow

© 666

friend follow

16

PageRank: Example

Apply the PageRank algorithm on the
following graph and select the user
associated with the highest PageRank value

045 friend 267 follow

O

friend
friend follow follow
032 0.36 0.32 017
friend follow

PageRank: Example

#Edge DataFrame

e = spark.createDataFrame([("ul","u2", "friend"),\
("u2","ug", "follow"),\
("ug", "u2", "follow"),\
("u6","u3", “follow"),\
("u5", "u6", "follow"),\
("u5", "u4", "friend"),\
("u4","u1", “friend"),\
("ul”,"u5", "friend")],\

['src”, "dst", “relationship"])

#Create the graph
g=GraphFrame(v, e)

16/05/2020

PageRank: Example

fromgraphframes import GraphFrame

#\Vertex DataFrame
v=spark.createDataFrame([("ul", "Alice", 34),\
("u2","Bob", 36),\
"u3", "Charlie", 30),\
"u4","David", 29),\
"u5", "Esther", 32),\
"u6", "Fanny", 36),\
"u7", "Gabby", 60)],\
["id", "name", "age"])

Custom graph algorithms

GraphFrames provides primitives for

developing yourself other graph algorithms

Itis based on message passing approach
The two key components are:

aggregateMessages

Send messages between vertexes, and aggregate messages for
each vertex

Joins
Joinmessage aggregates with the original graph

PageRank: Example

#Run the PageRank algorithm
pageRanks = g.pageRank(maxIter=30)

Select the maximum value of PageRank
maxPageRank = pageRanks vertices.agg({"pagerank":"max"}\
Afirst()["max(pagerank)"]

Select the user with the maximum PageRank

pageRanks.vertices filter(pageRanks vertices.pagerank==maxPageRank)\
.show()

100

Custom graph algorithm: Example

For each user, compute the sum of the ages
of adjacent users (count many times the
same adjacent user if there are many links)

friend follow

@60

friend
friend follow follow

©a0o6

friend follow
102

17

Custom graph algorithm: Example

Custom graph algorithm: Example

16/05/2020

For each user, compute the sum of the ages
of adjacent users (count many times the
same adjacent user if there are many links)

fromgraphframes import GraphFrame
from pyspark.sgl.functionsimportsum as sqlsum
fromgraphframes.lib import AggregateMessages

#\Vertex DataFrame

v=spark.createDataFrame([("ul", "Alice", 34),\
("u2","Bob", 36),\
"u3", "Charlie", 30),\
"u4","David", 29),\

friend follow
A
f\ > > ut 97
\ # u2 94
S~
friend lerg foll foll v 108
jollow follow ud 66
q (ﬂ (us 99
© u6 62
e -
friend follow

Custom graph algorithm: Example

"u5", "Esther", 32),\
"u6", "Fanny", 36),\
"u7", "Gabby", 60)],\
["id", "name", “age"])

104

Custom graph algorithm: Example

#Edge DataFrame
e =spark.createDataFrame([("ul","u2","friend"),\
" ", "follow"),\
", "follow"),\
", "follow"),\
", "follow"),\
" "friend”),\
" “friend"),\
", "friend")],\
" "relationship"])

#Create the graph
g=GraphFrame(v, e)

#For each user, sumthe ages of the adjacent users

#Send the age of each destination of an edge to itssource
msgToSrc=AggregateMessages.dst['age"]

#Send the age of each source of an edge to its destination
msgToDst = AggregateMessages.src["age"]

Aggregate messages

aggAge = g.aggregateMessages(sqlsum(AggregateMessages.msg),\
sendToSrc=msgToSrc,\
sendToDst=msgToDst)

#Showresult

aggAge.show()

106

18

