
03/06/2020

1

 Spark Streaming is a framework for large
scale stream processing

 Scales to 100s of nodes

 Can achieve second scale latencies

 Provides a simple batch-like API for
implementing complex algorithm

 Can absorb live data streams from Kafka, Flume,
ZeroMQ, Twitter, …

03/06/2020

2

 Many important applications must process
large streams of live data and provide results
in near-real-time

 Social network trends

 Website statistics

 Intrusion detection systems

 …

03/06/2020

3

 Scalable to large clusters
 Second-scale latencies
 Simple programming model
 Efficient fault-tolerance in stateful

computations

 Storm
 Replays record if not processed by a node
 Processes each record at least once
 May update mutable state twice
 Mutable state can be lost due to failure

 Storm Trident
 Uses transactions to update state
 Processes each record exactly once
 Per state transaction updates slow

 Apache Flink
 Stateful Computations over Data Streams

 6

03/06/2020

4

7

 Spark streaming runs a streaming
computation as a series of very small,
deterministic batch jobs

 It splits each input stream in “portions” and
processes one portion at a time (in the
incoming order)

 The same computation is applied on each portion
of the stream

 Each portion is called batch

8

03/06/2020

5

 Spark streaming

 Splits the live stream into batches of X seconds

 Treats each batch of data as RDDs and processes
them using RDD operations

 Finally, the processed results of the RDD
operations are returned in batches

9

 Problem specification

 Input: a stream of sentences

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch

▪ i.e., execute the word count problem for each batch of
10 seconds

10

03/06/2020

6

11

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

12

Test Spark streaming
0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

03/06/2020

7

13

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

14

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

0

10

20

30

Time (s)

Input stream

03/06/2020

8

15

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

0

10

20

30

Time (s)

Input stream

16

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

Input stream

03/06/2020

9

17

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

Input stream

18

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

(third,1), (batch, 1)

Input stream

03/06/2020

10

 DStream

 Sequence of RDDs representing a discretized
version of the input stream of data

▪ Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP
sockets, ..

 One RDD for each batch of the input stream

 PairDStream

 Sequence of PairRDDs representing a stream of
pairs

 Transformations

 Modify data from one DStream to another

 Standard RDD operations

▪ map, countByValue, reduce, join, …

 Window and Stateful operations

▪ window, countByValueAndWindow, …

 Output Operations (actions)

 Send data to external entity

▪ saveAsHadoopFiles, saveAsTextFile, ...

03/06/2020

11

 DStreams remember the sequence of
operations that created them from the
original fault-tolerant input data

 Batches of input data are replicated in
memory of multiple worker nodes, therefore
fault-tolerant

 Data lost due to worker failure, can be
recomputed from input data

 Define a Spark Streaming Context object

 Define the size of the batches (in seconds)
associated with the Streaming context

 Specify the input stream and define a
DStream based on it

 Specify the operations to execute for each
batch of data

 Use transformations and actions similar to the
ones available for “standard” RDDs

03/06/2020

12

 Invoke the start method

 To start processing the input stream

 Wait until the application is killed or the
timeout specified in the application expires

 If the timeout is not set and the application is not
killed the application will run forever

 The Spark Streaming Context is defined by using
the JavaStreamingContext(SparkConf sparkC,
Duration batchDuration) constructor of
JavaStreamingContext

 The batchDuration parameter specifies the “size”
of the batches

 Example
JavaStreamingContext jssc =

new JavaStreamingContext(conf,Durations.seconds(10));

 The input streams associated with this context will be split
in batches of 10 seconds

03/06/2020

13

 The input Streams can be generate from
different sources

 TCP socket, Kafka, Flume, Kinesis, Twitter

 Also an HDFS folder can be used as “input stream”

▪ This option is usually used during the application
development to perform a set of initial tests

25

 A DStream can be associated with the content
emitted by a TCP socket

 socketTextStream(String hostname, int port_number)

is used to create a DStream based on the textual
content emitted by a TPC socket

 Example

JavaReceiverInputDStream<String> lines =
jssc.socketTextStream("localhost", 9999);

 “Store” the content emitted by localhost:9999 in the
lines DStream

26

03/06/2020

14

 A DStream can be associated with the content
of an input (HDFS) folder

 Every time a new file is inserted in the folder, the
content of the file is “stored” in the associated
DStream and processed

 Pay attention that updating the content of a file does
not trigger/change the content of the DStream

 textFileStream(String folder) is used to create a
DStream based on the content of the input
folder

27

 Example

JavaDStream<String> lines =
jssc.textFileStream(inputFolder);

 “Store” the content of the files inserted in the
input folder in the lines Dstream

 Every time new files are inserted in the folder their
content is “stored” in the current “batch” of the
stream

28

03/06/2020

15

 Usually DStream objects are defined on top
of streams emitted by specific applications
that emit real-time streaming data
 E.g., Apache Kafka, Apache Flume, Kinesis,

Twitter
 You can also write your own applications for

generating streams of data
 However, Kafka, Flume and similar tools are

usually a more reliable and effective solutions for
generating streaming data

29

 Analogously to standard RDDs, also DStream
are characterized by a set of transformations
 When applied to DStream objects, transformations

return a new DStream Object
 The transformation is applied on one batch (RDD) of

the input DStream at a time and returns a batch
(RDD) of the new DStream
▪ i.e., each batch (RDD) of the input DStream is associated with

exactly one batch (RDD) of the returned DStream
 Many of the available transformations are the

same transformations available for standard
RDDs

30

03/06/2020

16

 map(func)
 Returns a new DStream by passing each element

of the source DStream through a function func
 flatMap(func)
 Each input item can be mapped to 0 or more

output items. Returns a new DStream
 filter(func)
 Returns a new DStream by selecting only the

records of the source DStream on which func
returns true

31

 reduce(func)
 Returns a new DStream of single-element RDDs by

aggregating the elements in each RDD of the source
DStream using a function func. The function should be
associative so that it can be computed in parallel

 reduceByKey(func)
 When called on a PairDStream of (K, V) pairs, returns a

new PairDStream of (K, V) pairs where the values for each
key are aggregated using the given reduce function

 countByValue()
 When called on a DStream of elements of type K, returns a

new PairDStream of (K, Long) pairs where the value of
each key is its frequency in each batch of the source
DStream

32

03/06/2020

17

 count()
 Returns a new DStream of single-element RDDs by

counting the number of elements in each batch (RDD)
of the source Dstream
▪ i.e., it counts the number of elements in each input batch

(RDD)
 union(otherStream)
 Returns a new DStream that contains the union of the

elements in the source DStream and otherDStream.
 join(otherStream)
 When called on two PairDStreams of (K, V) and (K, W)

pairs, return a new PairDStream of (K, (V, W)) pairs
with all pairs of elements for each key.

33

 cogroup(otherStream)

 When called on a PairDStream of (K, V) and (K, W)
pairs, return a new DStream of (K, Seq[V],
Seq[W]) tuples

34

03/06/2020

18

 print()

 Prints the first 10 elements of every batch of data
in a DStream on the driver node running the
streaming application

▪ Useful for development and debugging

35

 saveAsTextFiles(prefix, [suffix])
 Saves the content of the DStream on which it is invoked as

text files
▪ One folder for each batch

▪ The folder name at each batch interval is generated based on
prefix, time of the batch (and suffix):
"prefix-TIME_IN_MS[.suffix]“

 It is not directly available for JavaDStream objects
▪ A Scala DStream object must be created from a JavaDStream by

invoking the dstream() method.

▪ saveAsTextFiles can be invoked on the returned Scala Dstream

 Example
▪ Counts.dstream().saveAsTextFiles(outputPathPrefix, "");

36

03/06/2020

19

 The start() method of the
JavaSparkStreamingContext class is used to
start the application on the input stream(s)

 The awaitTerminationOrTimeout(long
millisecons) method is used to specify how
long the application will run

 The awaitTerminationOrTimeout() method
is used to run the application forever

 Until the application is explicitly killed

 37

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch
▪ i.e., execute the word count problem for each batch of

10 seconds

 Store the results also in an HDFS folder

38

03/06/2020

20

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {

 public static void main(String[] args) {

 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

39

 // Create a (Receiver) DStream that will connect to localhost:9999

 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" transformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words = lines
 .flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word ->
 new Tuple2<String, Integer>(word.toLowerCase(), 1));

 JavaPairDStream<String, Integer> wordsCounts =

 wordsOnes.reduceByKey((i1, i2) -> i1 + i2);

40

03/06/2020

21

 wordsCounts.print();

 wordsCounts.dstream().saveAsTextFiles(outputPathPrefix, "");

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();

 }
}

41

 Spark Streaming also provides windowed
computations

 It allows you to apply transformations over a
sliding window of data

▪ Each window contains a set of batches of the input
stream

▪ Windows can be overlapped
▪ i.e., the same batch can be included in many consecutive

windows

42

03/06/2020

22

 Graphical example

 Every time the window slides over a source
DStream, the source RDDs that fall within the
window are combined and operated upon to
produce the RDDs of the windowed DStream

43

 In the graphical example, the operation

 is applied over the last 3 time units of data (i.e.,
the last 3 batches of the input DStream)

▪ Each window contains the data of 3 batches

 slides by 2 time units

44

03/06/2020

23

 Any window operation needs to specify two
parameters:

 Window length

▪ The duration of the window (3 in the example)

 Sliding interval

▪ The interval at which the window operation is
performed (2 in the example)

 These two parameters must be multiples of
the batch interval of the source DStream

45

 Problem specification
 Input: a stream of sentences

 Split the input stream in batches of 10 seconds

 Define widows with the following characteristics
▪ Window length: 20 seconds (i.e., 2 batches)

▪ Sliding interval: 10 seconds (i.e., 1 batch)

 Print on the standard output, for each window,
the occurrences of each word appearing in the
window
▪ i.e., execute the word count problem for each window

46

03/06/2020

24

47

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

48

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

03/06/2020

25

49

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,3), (streaming,2),
(second,2), (sentence,1),
(batch,2), (of,1), (size,1), (10,2),
(seconds,2)

Stdout

0

10

20

30

Time (s)

Input stream

50

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

Stdout

(second, 1), (spark,1), (batch,3),
(of,1), (size,1), (10,2),
(seconds,2), (third,1)

0

10

20

30

Time (s)

Input stream

03/06/2020

26

 window(windowLength, slideInterval)
 Returns a new DStream which is computed based

on windowed batches of the source DStream
 countByWindow(windowLength,

slideInterval)
 Returns a new single-element stream containing

the number of elements of each window
▪ The returned object is a JavaDStream<Long>. However,

it contains only one value for each window (the number
of elements of the last analyzed window)

51

 reduceByWindow(func, windowLength,
slideInterval)
 Returns a new single-element stream, created by

aggregating elements in the stream over a sliding
interval using func. The function should be associative
so that it can be computed correctly in parallel

 countByValueAndWindow(windowLength,
slideInterval)
 When called on a DStream of elements of type K,

returns a new PairDStream of (K, Long) pairs where
the value of each key is its frequency in each window
of the source DStream

52

03/06/2020

27

 reduceByKeyAndWindow(func,
windowLength, slideInterval)

 When called on a PairDStream of (K, V) pairs,
returns a new PairDStream of (K, V) pairs where
the values for each key are aggregated using the
given reduce function over batches in a sliding
window

▪ The window length and the sliding window step are
specified as parameters of this invokation

53

 A streaming application must operate 24/7 and hence
must be resilient to failures unrelated to the
application logic (e.g., system failures, JVM crashes,
etc.)

 For this to be possible, Spark Streaming needs to
checkpoint enough information to a fault- tolerant
storage system such that it can recover from failures

 This result is achieved by means of checkpoints
 Operations that store the data and metadata needed to

restart the computation if failures happen
 Checkpointing is necessary even for some window

transformations and stateful transformations

54

03/06/2020

28

 Checkpointing is enabled by using the
checkpoint(String folder) method of
JavaSparkStreamingContext

 The parameter is the folder that is used to store
temporary data

55

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 10 seconds

 Define widows with the following characteristics
▪ Window length: 30 seconds (i.e., 3 batches)

▪ Sliding interval: 10 seconds (i.e., 1 batch)

 Print on the standard output, for each window, the
occurrences of each word appearing in the window
▪ i.e., execute the word count problem for each window

 Store the results also in an HDFS folder

56

03/06/2020

29

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {
 public static void main(String[] args) {
 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

 // Set the checkpoint folder (it is needed by some window transformations)
 jssc.checkpoint("checkpointfolder");

57

 // Create a (Receiver) DStream that will connect to localhost:9999
 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" trasformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words =
 lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 // Count the occurrence of each word in the current window
 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word -> new Tuple2<String, Integer>(word.toLowerCase(), 1));

58

03/06/2020

30

 // reduceByKeyAndWindow is used instead of reduceByKey
 // The characteristics of the window is also specified
 JavaPairDStream<String, Integer> wordsCounts = wordsOnes
 .reduceByKeyAndWindow((i1, i2) -> i1 + i2,
 Durations.seconds(30),
 Durations.seconds(10));

 // Print the num. of occurrences of each word of the current window
 // (only 10 of them)
 wordsCounts.print();

 // Store the output of the computation in the folders with prefix
 // outputPathPrefix
 wordsCounts.dstream().saveAsTextFiles(outputPathPrefix, "");

59

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();
 }
}

60

03/06/2020

31

 The updateStateByKey transformation
allows maintaining a state

 The value of the state is continuously updated
every time a new batch is analyzed

61

 The use of updateStateByKey is based on two
steps

 Define the state

▪ The data type of the state can be an arbitrary data type

 Define the state update function

▪ Specify with a function how to update the state using
the previous state and the new values from an input
stream

62

03/06/2020

32

 In every batch, Spark will apply the state
update function for all existing keys

 For each key, the update function is used to
update the value associated with a key by
combining the former value and the new
values associated with that key
 For each key, the call method of the “function” is

invoked on the list of new values and the former
state value and returns the new aggregated value
for the considered key

63

 By using the UpdateStateByKey, the
application can continuously update the
number of occurrences of each word

 The number of occurrences stored in the
PairDStream returned by this transformation is
computed over the union of all the batches (for
the first one to current one)

▪ For efficiency reasons, the new value is computed by
combining the last value with the values of the current
batch

64

03/06/2020

33

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 10 seconds

 Print on the standard output, every 10 seconds,
the occurrences of each word appearing in the
stream (from time 0 to the current time)
▪ i.e., execute the word count problem from the

beginning of the stream to current time

 Store the results also in an HDFS folder

65

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {
 public static void main(String[] args) {
 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

 // Set the checkpoint folder (it is needed by some window transformations)
 jssc.checkpoint("checkpointfolder");

66

03/06/2020

34

 // Create a (Receiver) DStream that will connect to localhost:9999
 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" transformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words =
 lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word -> new Tuple2<String, Integer>(word.toLowerCase(), 1));

67

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

68

03/06/2020

35

 wordsOnes.reduceByKey((i1, i2) -> i1 + i2);

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

69

It is invoked one time for each key

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

70

List of new integer values for the current key

03/06/2020

36

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

71

Current “state” of the current key,
i.e., number of occurrences in the previous part of the stream

 totalWordsCounts.print();

 totalWordsCounts.dstream().saveAsTextFiles(outputPathPrefix, "");

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();

 }
}

72

03/06/2020

37

73

 transform(func)
 It is a specific transformation of DStreams

 It returns a new DStream by applying an RDD-to-RDD
function to every RDD of the source Dstream
▪ This can be used to do arbitrary RDD operations on the

DStream

 For example, the functionality of joining every
batch in a data stream with another dataset (a
standard RDD) is not directly exposed in the
DStream API
 However, you can use transform to do that

74

03/06/2020

38

 transformToPair(func)

 It is a specific transformation of PairDStreams

 It returns a new PairDStream by applying a
PairRDD-to-PairDD function to every PairRDD of
the source PairDStream

 It must be used instead of transform when
working with PairDStreams/PairRDDs

75

 Problem specification

 Input: a stream of sentences retrieved from
localhost:9999

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch

▪ The pairs must be returned/displayed sorted by key

 Store the results also in an HDFS folder

76

03/06/2020

39

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {

 public static void main(String[] args) {
 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

77

 // Create a (Receiver) DStream that will connect to localhost:9999
 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" transformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words = lines
 .flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word -> new Tuple2<String, Integer>(word.toLowerCase(), 1));

 JavaPairDStream<String, Integer> wordsCounts =
 wordsOnes.reduceByKey((i1, i2) -> i1 + i2);

78

03/06/2020

40

 // Sort the content/the pairs by key
 JavaPairDStream<String, Integer> wordsCountsSortByKey = wordsCounts
 .transformToPair((JavaPairRDD<String, Integer> rdd) -> rdd.sortByKey());

 wordsCountsSortByKey.print();

 wordsCountsSortByKey.dstream().saveAsTextFiles(outputPathPrefix, "");

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();
 }
}

79

