27/05/2020

Spark Structured Streaming

What is Spark Structured
Streaming?

Structured Streamingis a scalable and fautblerant
stream processing engine that built on the Spark
SQL engine
Input data are represented by means of (streaming)
DataFrames
Structured Streaming uses the existing Spark SQL
APIs to query data streams
4EA OAI A TAOET A0 xA OOAA A&
DataFrames
A set of specific methods that are used to define
Input and output streams

Windows

Input data model

Each input data stream is modeled as a table
that is being continuously appended

Every time new data arrive they are appended at
the end of the table

I.e., each is considered an

Input data model

New input data in the stream = new rows
appended to an unbounded table

Datastream Unbounded Table

Data stream as an unbounded table

27/05/2020

The expressed queries are incremental queries
that are run incrementally on the unbounded
input tables

The arrive of new data triggers the execution of the
incremental queries

The at a specific timestamp is the
one obtained by running the query

E 8 At@diuNG®DAOEAOCS6 AOA AQAAOOAA
Aggregation queries combine new data with the

previous results to optimize the computation of the
new results

The queries can be executed
As micrebatch queries with a fixed batch interval

fault-tolerance guarantees
As continuous queries
Experimental
fault-tolerance guarantees

27/05/2020

In this example the (micrbatch) query is
executed every 1 second

/ Trigger: every 1 sec

2
>
>

Time I

up

1
I
data up data data up
Input 1o =1 to =2 =3

Query

Result [j result up result up esul
tot=1 tot=2 tot=3
Output

In this example the (micrdatch) query is
executed every 1

Time

1
|
data up data up s]
|HDUT to t=1 to t=2 tot=3

< — w

Query

Result [j result up result u result
tot=1 tot=2 =3
Qutput

27/05/2020

Example

Input
A stream of records retrieved from localhost:9999

Each input record is a reading about the status of a station

of a bike sharing system in a specific timestamp

Each input reading has the format

stationld# free slots,#usedslots,timestamp

For eaclstationld, print on the standard output the
total number of received input reading with a number
of free slots equalto O

Print the requested information when new data are

received by using the micrbatch processing mode

Suppose the batckduration is set to 2 seconds

Example

4 1+ 4 1

6 | 6 -

8 1 8 |

104 104
Time (s) ¥ Time (5],

27/05/2020

Example

Time (s) Y

s1,0,3,2016€3-11 09:00:04

Time (s

11

Example

Time (s) Y

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

Time (s)),

27/05/2020

Time (s) Y

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

4

L.
s1,1

8 _

10

Time (s

13

Example

Time (s) Y

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

$1,0,3,2016€311 09:00:06
$2,0,3,201603-11 09:00:07
s11,12,3,20163-11 09:00:06

4

| .l
sl,1

8 |

104

Time (s"l4

27/05/2020

Time (s) Y

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06
s2,0,3,2016311 09:00:07
s11,12,3,20163-11 09:00:06

4
6 —
s1,1
8 _
s1,2
s2,1
10
Time (s

15

Example

Time (s) Y

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

$1,0,3,2016€311 09:00:06
$2,0,3,201603-11 09:00:07
s11,12,3,20163-11 09:00:06

$1,10,3,201:9©3-11 09:00:09

4 |
6 -
sl,1
8 |
sl,2
s2,1
104
Time (s);6

27/05/2020

Time(s) ¥

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06
s2,0,3,2016311 09:00:07
s11,12,3,20163-11 09:00:06

17

Key concepts

Input sources
Transformations
Outputs
External destinations/sinks
Output Modes
Query run/execution
Triggers

27/05/2020

Input sources

File source

Reads files written in a directory as a stream of
data

Each line of the input file is an input record

Supported file formats are textsy, json, orc,
parquet, ..

Kafka source
Reads data from Kafka

Each Kafka message is one input record

Input sources

Socket source (for debugging purposes)
Reads UTF8 text data from a socket connection
This type of source

Rate source (for debugging purposes)

Generates data at the specified number of rows
per second

Each generated row contains a timestamp and
value of type long

27/05/2020

10

Input sources

The property of the
SparkSessiomlass is used to create
DataStreamReaders

The methods and of the

DataStreamReadeclass are used to specify
the input streams

A4UPAR 11T AAOQGEI T h 8
The method of the DataStreamReader
class is used to returDataFramesassociated
with the input data streams

Input sources

In this example the (streamind)ataFrame
recordsDHs created and associated with the
input stream of type socket

Addressiocalhost
Input port: 9999

recordsDF=spark.readStream
format("socket")\
.option("host", localhost’)\
.option("port", 9999)\

Joad()

27/05/2020

11

Transformations

Transformations are the same @fataFrames
However, there are some
types of queries/

23

Transformations

operations

Multiple streaming aggregations (i.e. a chain of
aggregations on a streaminQataFrame

Limit and take first N rows
Distinct operations

Sorting operations are supported on streaming
DataFramesonly after an aggregation and in
complete output mode

Few types of outer joins on streaming
DataFramesare not supported

24

27/05/2020

12

Outputs

Sinks

They are instances of the claBataStreamWriterand

are used to specify the external destinations and store

the results in the external destinations
File sink

Stores the output to a directory

Supported file formats are textsy,json, orc,
parquet, ..
Kafka sink
Stores the output to one or more topics in Kafka
Foreachsink

Runs arbitrary computation on the output records

Outputs

Console sink (for debugging purposes)

Prints the computed output to the console every time
a new batch of records has been analyzed

This should be used for debugging purposes on low

data volumes as the entire output is collected and

O0i OAA ET OEA AOEOAOGO I
Memory sink (for debugging purposes)

The output is stored in memory as arnmemory
table

This should be used for debugging purposes on low
data volumes as the entire output is collected and
001 OAA ET OEA AOEOAOGO |

27/05/2020

13

Output modes

We must define how we want Spark to write
output data in the external destinations
Supported output modes:

Append

Complete

Update
The supported output mode depend on the

query type

27

Output modes

Append mode
Default mode
Only the new rows added to the computed result
since the last trigger (computation) will be outputted
This mode is supported for only those queries where
rows added to the result is never going to change
This mode guarantees that each row will be output only once

Queries with only select, filter, maflatMap, filter,
join, etc. support append mode

28

27/05/2020

14

Output modes

Complete mode

The whole computed result will be outputted to
the sink after every trigger (computation)

This mode is supported for aggregation queries

29

Output modes

Update mode

Only the rows in the computed result that were
updated since the last trigger (computation) will
be outputted

The complete list of supported output modes
for each query type is available at
https://spark.apache.org/docs/latest/structured

streaming-programmingquide.html#output-
modes

30

27/05/2020

15

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Outputs

The property of the

SparkSessiomlass is used to create

DataStreamWriters

The methods : and
of the DataStreamWriterclass are

used to specify the output destination

Data format, location, output mode, etc.

Outputs

In this example

TheDataStreamWriterstreamWriterRess
created and associated with the console

The output mode is set to append

streamWriterRes stationldTimestampDFR
writeStream\

.outputMode("append")\
format("console")

27/05/2020

16

Query run/execution

To start executing the defined queries/structured
streaming applications you must explicitly
invoke the action on the defined sinks
(DataStreamWriteilobjects associated with the
external destinations in which the results will be
stored)

You can start several queries in the same
application

Structured streaming queries run forever

You must explicitly stop/kill them otherwise they will
run forever

33

Triggers

For each Spark structured streaming query we
can specify when new input data must be
processed
And whether the query is going to be executed
as a micrebatch query with a fixed batch interval
or as a continuous processing query (experimental)
The trigger type for each query is specified by
means of the method of the
DataStreamWriterclass

34

27/05/2020

17

TriggerTypes

No trigger type is explicitly specified
Default trigger setting
The query will be executed in

Each micrebatch is generated and processed as
soon as the previous micybatch has been
processed

35

TriggerTypes

Fixed interval micrebatches
The query will be executed in

Micro-batches will be processed at the user
specified intervals

The parametemprocessingTimeof the trigger method()
Is used to specify the micrbatch size

If the previous micrebatch completes within its interval,
then the engine will wait until the interval is over before
processing the next micrbatch

36

27/05/2020

18

TriggerTypes

If the previous micrebatch takes longer than the
interval to complete (i.e. if an interval boundary is
missed), then the next micrbatch will start as soon as
the previous one completes

37

TriggerTypes

One-time micro-batch
The query will be executed in

But the query will be on
one single micrebatch containing all the available
data of the input stream

After the single execution the query stops on its own

38

27/05/2020

19

TriggerTypes

This trigger type is useful when you want to
periodically spin up a cluster, process everything
that is available since the last period, and then
shutdown the cluster

In some case, this may lead to significant cost savings

39

TriggerTypes

Continuous with fixed checkpoint interval
(experimental)

The query will be executed in the new ldatency,

At-least-oncefault-toleranceguarantees

40

27/05/2020

20

Sparks Structured Streaming:

Example 1

Problem specification
Input

A stream of records retrieved from localhost:9999
Each input record is a reading about the status of a station of
a bike sharing system in a specific timestamp
Each input reading has the format

stationld,# free slots,#usedslots,timestamp

Output

For each input reading with a number of free slots equal to O

print on the standard output the value sfationldand
timestamp

Use the standard micrdatch processing mode

41

Sparks Structured Streaming:

Example 1

from pyspark.sql.typesmport *
from pyspark.sqgl.functionsmport split

Create a "receiverDataFramethat will connect to localhost:9999
recordsDF= spark.readStrearh

format("socket")\

.option("host", localhost’) \

.option("port", 9999)\

load()

42

27/05/2020

21

27/05/2020

Sparks Structured Streaming:

Example 1

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,260811 09:00:04

Define four more columns by splitting the input column value
New columns:

- stationld
- freeslots
- usedslots
- timestamp

readingsDF=recordsDRk

withColumn("stationld', splitfecordsDF.valug',")[0].cast("string"))
withColumn("freeslots', splitfecordsDF.valug',")[1].cast("integer"))
.withColumn("usedslots, splitfecordsDF.valug',")[2].cast("integer"))
withColumn("timestamp", splittecordsDF.valug',")[3].cast("timestamp"))

43

Sparks Structured Streaming:

Example 1

The input records are characterized by one single column called value
of type string

Example of an input record: s1,0,3,260811 09:00:04

Dafina four mara_coliimne hyv enlittina tha_innut calumn vaglue

rnndingsDF: recordsDRE

.withColumn("stationld", splittecordsDF.valug',")[0].cast("string"))
withColumn("freeslots', splitfecordsDF.valug',")[1].cast("integer"))
.withColumn("usedslots, splitfecordsDF.valug',")[2].cast("integer"))
withColumn("timestamp", splittecordsDF.valug',")[3].cast("timestamp"))

44

22

27/05/2020

Sparks Structured Streaming:

Example 1

The input records are characterized by one single column called value
of type string

Example of an input record: s1,0,3,260811 09:00:04

Define four more columns by splitting the input column value

readinasDF=recordsDE

withColumn("stationld', splitfecordsDF.valug',’)[0].cast("string"))
withColumn("freeslots', splitfecordsDF.valug',")[1].cast("integer"))
.withColumn("usedslots, splitfecordsDF.valug',")[2].cast("integer"))
withColumn("timestamp", splittecordsDF.valug',")[3].cast("timestamp"))

45

Sparks Structured Streaming:

Example 1

Filter data
Use the standard filter transformation
fullReadingsDFreadingsDF- filte("freeslots=0")

Selectstationid and timestamp
Use the standard select transformation
stationldTimestampDF= fullReadingsDF.sele€tstationld’, "timestamp")

46

23

27/05/2020

Sparks Structured Streaming:

Example 1

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

Selectstationidand timestamp
Use the standard select transformation
stationldTimestampDF= fullReadingsDF.sele€tstationld’, "timestamp")

47

Sparks Structured Streaming:

Example 1

Filter data
Use the standard filter transformation
fullReadingsDFreadingsDF- filte("freeslots=0")

Selectstationid and timestamp
Use the standard select transformation
stationldTimestampDF= fullReadingsDF.sele€tstationld’, "timestamp")

The result of the structured streaming query will be stored/printed on
Yy OEA AiTOI1 A "OETEOS

append output mode

queryFilterStreamWriter= stationldTimestampDR

writeStream\

.outputMode("append)\

.format("console")

48

24

27/05/2020

Sparks Structured Streaming:

Example 1

Start the execution of the query (it will be executed until it is explicitly stopped)
queryFilter=queryFilterStreamWriter.starf)

49

Sparks Structured Streaming:

Example 2

Problem specification
Input
A stream of records retrieved from localhost:9999
Each input record is a reading about the status of a station of
a bike sharing system in a specific timestamp
Each input reading has the format
stationld,# free slots,#usedslots,timestamp

Output

For eactstationld, print on the standard output the total
number of received input reading with a number of free slots
equalto 0

Print the requested information when new data are received
by using the standard micrbatch processing mode

50

25

27/05/2020

Sparks Structured Streaming:

Example 2

from pyspark.sql.typesmport *
from pyspark.sql.functionsmport split

Create a "receiverDataFramethat will connect to localhost:9999
recordsDF=spark.readStrearh

format("socket")\

.option("host", localhost’) \

.option("port", 9999)\

Jload()

51

Sparks Structured Streaming:

Example 2

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,260811 09:00:04

Define four more columns by splitting the input column value
New columns:

- stationld
- freeslots
- usedslots
- timestamp

readingsDF=recordsDF

.withColumn("stationld", splittecordsDF.valug',")[0].cast("string"))
withColumn("freeslots', splitfecordsDF.valug',")[1].cast("integer"))
.withColumn("usedslots, splitfecordsDF.valug',")[2].cast("integer"))
withColumn("timestamp", splittecordsDF.valug',")[3].cast("timestamp"))

52

26

Sparks Structured Streaming:

Example 2

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

53

Sparks Structured Streaming:

Example 2

Filter data
Use the standard filter transformation
fullReadingsDFreadingsDF- filte("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for eachstationld

The standardgroupBymethod is used

countsDF=fullReadingsDF

.groupBy("stationld")\

.agg({"™*":"count"})

54

27/05/2020

27

27/05/2020

Sparks Structured Streaming:

Example 2

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for eachstationld

The standardgroupBymethod is used

countsDF=fullReadingsDF

.groupBy("stationld")\

.agg({"*":"count"})

55

Sparks Structured Streaming:

Example 2

The result of the structured streaming query will be stored/printed on
the console "sink"

complete output mode

(append mode cannot be used for aggregation queries)
queryCountStreamWrite= countsDR

writeStream\

.outputMode("complete”)\

.format(“"console")

Start the execution of the query (it will be executed until it is explicitly stopped)
gueryCount=queryCountStreamWriter.stai)

56

28

27/05/2020

Event Time and Window
Operations

S

Event Time and Window Operations

Input streaming records are usually
characterized by a time information

It is thetime when the data was generated

Itis usually calledvent-time
For many applications, you want to operate
by taking into consideration the everitme
and windows containing data associated with
the same eventime range

58

29

Event Time and Window Operations

For example

Compute the number of events generated by each
monitored 0T device every minute based on the
event-time
For each window associated with one distinct minute
consider only the data with an evetitne inside that

minute/window and compute the number of events for each
loTdevice

One computation for each minute/window
You want to use the time when the data was

generated (i.e., the eventime) rather than the time
Spark receives them

59

Event Time and Window Operations

Spark allows defining the
input column

And then apply aggregation functions over

each window

60

27/05/2020

30

Event Time and Window Operations

For each structured streaming query on which
you want to apply a window computation you
must
Specify the name of the tim@&vent column in the
input (streaming)DataFrame
The characteristics of the (sliding) windows
windowDuration

slideDuration

Do not set it if you want nomverlapped windows, i.e., if you want to
aslideDurationequal towindowDuration

You can set different window characteristics for
each query of your application

61

Event Time and Window Operations

The

function is used inside the standard

one to specify the characteristics
of the windows
Windows can be used only with queries that
are applying aggregation functions

62

27/05/2020

31

EventTime and Window

Operations: Example 3

Problem specification

Input
A stream of records retrieved from localhost:9999

Each input record is a reading about the status of a
station of a bike sharing system in a specific timestamp

Each input reading has the format
stationld# freeslots,#usedslots,timestamp

is the

63

Event Time and Window

Operations: Example 3

Output

For eachstationld, print on the standard output the total
number of received input reading with a number of free
slots equal to O in each window

The query is executed for each window

SetwindowDurationto 2 seconds and nslideDuration
i.e., nonoverlapped windows

64

27/05/2020

32

EventTime and Window

Operations: Example 3

10

Time(s) ¥

10

Time (s

65

Event Time and Window

Operations: Example 3

10

Time(s) ¥

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

10

Time (s}

66

27/05/2020

33

27/05/2020

EventTime and Window

Operations: Example 3

4 b 4
51,0,3,2019311 09:00:04
$2,2,3,201603-11 09:00:05

6 b 6

[2016:03-11 09:00:04, 20163-11 09:00:06k1,1

8 L 8 |
10} 10}
Time(s) ¥ Time (S)g7

Event Time and Window

Operations: Example 3

N 4
51,0,3,2018311 09:00:04
$2,2,3,2016311 09:00:05

6 b 6 |

[2016:03-11 09:00:04, 20163-11 09:00:06k1,1

8 - 8 |
10} 10}
Time(s) ¥ Time (s'ég

34

EventTime and Window

Operations: Example 3

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06
s2,0,3,2016311 09:00:07
s11,12,3,20163-11 09:00:06

8 8
104~ 10
Time (s) ¥ Time (s

69

Event Time and Window

Operations: Example 3

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06

s2,0,3,2016311 09:00:07

s11,12,3,20163-11 09:00:06
8 b - 8
[2016:03-11 09:00:04, 20163-11 09:00:06k1,1
[2016:03-11 09:00:06, 20163-11 09:00:08k1,1
[2016:03-11 09:00:06, 2016311 09:00:08}5]?(,)1

10}

Time(s) ¥

Time (s).

27/05/2020

35

EventTime and Window

Operations: Example 3

4 b 4 _
s1,0,3,2016€311 09:00:04
s2,2,3,2016)3-11 09:00:05
6 J— 6
s1,0,3,2016€311 09:00:06
s2,0,3,2016)3-11 09:00:07
s11,12,3,20163-11 09:00:06
8 b . 8 |
s1,10,3,2016€311 09:00:09
10} 104
Time (s) ¥ Time (s

71

Event Time and Window

Operations: Example 3

T - 4
51,0,3,2013-11 09:00:04
$2,2,3,201311 09:00:05

- 6
51,0,3,2013-11 09:00:06
52,0,3,201603-11 09:00:07

s11,12,3,20:6311 09:00:06

< 8 |
51,10,3,2019311 09:00:09

10 i 10

[201603-11 09:00:04, 2026311 09:00:06k1,1

[20160311 09:00:06, 20:63-11 09:00:08k1,1

Time (s) ¥ [20160311 09:00:06, 2016311 09:00:0852,11

27/05/2020

36

27/05/2020

EventTime and Window

Operations: Example 3

from pyspark.sql.typesmport *
from pyspark.sql.functionsmport split
from pyspark.sql.functionsmport window

Create a "receiverDataFramethat will connect to localhost:9999
recordsDF=spark.readStrearh

format("socket")\

.option("host", 'localhost’) \

.option("port", 9999)\

Jload()

73

Event Time and Window

Operations: Example 3

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,260811 09:00:04

Define four more columns by splitting the input column value
New columns:

- stationld
- freeslots
- usedslots
- timestamp

readingsDF=recordsDF

.withColumn("stationld", splittecordsDF.valug',")[0].cast("string"))
withColumn("freeslots', splitfecordsDF.valug',")[1].cast("integer"))
.withColumn("usedslots, splitfecordsDF.valug',")[2].cast("integer"))
withColumn("timestamp", splittecordsDF.valug',")[3].cast("timestamp"))

74

37

EventTime and Window

Operations: Example 3

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

75

Event Time and Window

Operations: Example 3

Filter data
Use the standard filter transformation
fullReadingsDFreadingsDF- filte("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for eachstationldin each window.

windowDuration= 2 seconds

no overlapping windows

countsDF=fullReadingsDF
.groupBy(window(fullReadingsDF.timestamyg'2 seconds"”),stationld")\
agg({"™":"count"})\

.sort("window")

76

27/05/2020

38

27/05/2020

EventTime and Window

Operations: Example 3

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for eachstationldin each window.

windowDuration= 2 seconds

no overlapping windows

countsDE=fullReadingsDE
.groupBy(window(fullReadingsDF.timestamyg'2 seconds"),stationld")\
.agg({"*":"count")\

.sort("window")

7

Event Time and Window

Operations: Example 3

The result of the structured streaming query will be stored/printed on
the console "sink"

complete output mode

(append mode cannot be used for aggregation queries)
queryCountWindowStreamWriter countsDR

.writeStream\

.outputMode("complete”)\

.format("console")

81 POEITj 0001 AAOGA"h " £Al OAOQ

Start the execution of the query (it will be executed until it is explicitly stopped)
gueryCountWindows= queryCountWindowStreamWriter.staf}

78

39

Late data

Sparks handles data that have arrived later
than expected based on its evelime

They are called late data
Spark has full control over updating old
aggregates when there are late data
Every time new data are processed the result is
computed by combining old aggregate values and
the new data by considering the evetime
column instead of the time Spark receives the
data

79

Late data: Running example

Problem specification

Input
A stream of records retrieved from localhost:9999

Each input record is a reading about the status of a
station of a bike sharing system in a specific timestamp
Each input reading has the format

stationld# free slots,#usedslots,timestamp

is the

80

27/05/2020

40

Late data: Running example

Output

For eachstationld, print on the standard output the total
number of received input reading with a number of free
slots equal to 0 in each window

The query is executed for each window

SetwindowDurationto 2 seconds and nslideDuration
i.e., nonoverlapped windows

81

Late data: Running example

10

Time (s) Y

- 10}

. A 4
Time (S)g»

27/05/2020

41

Late data: Running example

10

Time (s) Y

4
s1,0,3,2016€311 09:00:04
s2,2,3,201603-11 09:00:05

6 —

8 _

10

Time (s

83

10

Time (s) Y

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

................................... 6 |
[2016:03-11 09:00:04, 20163-11 09:00:06k1,1

8

10

Time (s);

27/05/2020

42

Late data: Running example

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s2,0,3,2016)311 09:00:07
s11,12,3,20163-11 09:00:06

8 L 8 |
10} 10}
Time(s) ¥ Time (S)gs

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s2,0,3,201603-11 09:00:07
s11,12,3,20163-11 09:00:06

8 b - 8

[2016:03-11 09:00:04, 20163-11 09:00:06k1,1
[2016:03-11 09:00:06, 2016311 09:00:08k2,1

10} 104

Time(s) ¥ Time (s'ég,

27/05/2020

43

Late data: Running example

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s2,0,3,2016)311 09:00:07
s11,12,3,20163-11 09:00:06

s1,0,3,2016€3-11 09:00:06
$1,10,3,201:9©311 09:00:09

10}

Time(s) ¥

10

Time (s

87

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s2,0,3,201603-11 09:00:07
s11,12,3,20163-11 09:00:06

s1,0,3,2016€3-1109:00:06
s1,10,3, 201311 09:00:09

10}

Time(s) ¥

10

Time (s);

27/05/2020

44

Late data: Running example

10}

Time(s) ¥

................................... - 4 |
s1,0,3,2019©3-11 09:00:04

s2,2,3,20160311 09:00:05

................................... 6
s2,0,3,20160311 09:00:07

s11,12,3,20163-11 09:00:06

................................... 8 _
s1,0,3,20193-1109:00:06

s1,10,3,201:®311 09:00:09

................................... 104

[201603-11 09:00:04, 20163-11 09:00:06k1,1
[2016:03-11 09:00:06, 2016311 09:00:08F1,1

[2016:03-11 09:00:06, 20163-11 09:00:08F2,1

89

10}

Time(s) ¥

................................... 4
s1,0,3,2018€311 09:00:04

s2,2,3,2016)3-11 09:00:05

................................... 6
s2,0,3,2016)3-11 09:¢~-~=

s11,12,3,2026311 0

s1,0,3,20183-1109:00:06

s1,10,3,201:6©3-11 09:00:09

................................... 104

[2016:03-11 09:00:04, 2016311 09:00:06k1.1
[2016:03-11 09:00:06, 2016311 09:00:08F1,1

[2016:03-1109:00:06, 2016311 09:00:08F2, 1y

27/05/2020

45

Late data: Running example

4EA AT AA EO OEA OAI A
Window Operationg, %@ Al DI A Qo
Late data are automatically handled by Spark

91

Event Time and Window

Operations: Example 4

Problem specification
Input
A stream of records retrieved from localhost:9999

Each input record is a reading about the status of a
station of a bike sharing system in a specific timestamp

Each input reading has the format
stationld# free slots,#usedslots,timestamp

is the

92

27/05/2020

46

EventTime and Window

Operations: Example 4

Output

For each window, print on the standard output the total
number of received input reading with a number of free
slots equal to O

The query is executed for each window

SetwindowDurationto 2 seconds and nslideDuration
i.e., nonoverlapped windows

93

Event Time and Window

Operations: Example 4

10

Time (s) Y

- 10}

. A 4
Time (S)y,

27/05/2020

47

27/05/2020

EventTime and Window

Operations: Example 4

4 1 4 1
s1,0,3,20163-11 09:00:04
s2,2,3,2016311 09:00:05

6 | 6

8 L 8 |

10} 10}

Time(s) ¥ Time (S)os

Event Time and Window

Operations: Example 4

N 4
51,0,3,2018311 09:00:04
$2,2,3,2016311 09:00:05

6 b 6 |

[2016:03-11 09:00:04, 20163-11 09:00:06]L

8 - 8 |
10} 10}
Time(s) ¥ Time (s'ée

48

EventTime and Window

Operations: Example 4

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06
s2,0,3,2016311 09:00:07
s11,12,3,20163-11 09:00:06

8 8
104~ 10
Time (s) ¥ Time (s

97

Event Time and Window

Operations: Example 4

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06
s2,0,3,2016311 09:00:07
s11,12,3,20163-11 09:00:06
8 b - 8
[2016:03-11 09:00:04, 2016311 09:00:06],
[2016-03-11 09:00:06, 2016311 09:00:08],2

10} 10

Time(s) ¥

Time (s);

27/05/2020

49

27/05/2020

EventTime and Window

Operations: Example 4

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

s1,0,3,2016€3-11 09:00:06
s2,0,3,2016311 09:00:07
s11,12,3,20163-11 09:00:06

s1,10,3,2019311 09:00:09

104 104

Time(s) ¥ Time (S)og

Event Time and Window

Operations: Example 4

s1,0,3,2016€3-11 09:00:04
$2,2,3,2016311 09:00:05

$1,0,3,2016€311 09:00:06
$2,0,3,201603-11 09:00:07
s11,12,3,20163-11 09:00:06

O = 10+
[2016:03-11 09:00:04, 20163-11 09:00:06]L
[2016:03-11 09:00:06, 20163-11 09:00:08],2

I v v
Time (s) Yoo

50

27/05/2020

EventTime and Window

Operations: Example 4

from pyspark.sql.typesmport *
from pyspark.sql.functionsmport split
from pyspark.sql.functionsmport window

Create a "receiverDataFramethat will connect to localhost:9999
recordsDF=spark.readStrearh

format("socket")\

.option("host", 'localhost’) \

.option("port", 9999)\

Jload()

101

Event Time and Window

Operations: Example 4

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,260811 09:00:04

Define four more columns by splitting the input column value
New columns:

- stationld
- freeslots
- usedslots
- timestamp

readingsDF=recordsDF

.withColumn("stationld", splittecordsDF.valug',")[0].cast("string"))
withColumn("freeslots', splitfecordsDF.valug',")[1].cast("integer"))
.withColumn("usedslots, splitfecordsDF.valug',")[2].cast("integer"))
withColumn("timestamp", splittecordsDF.valug',")[3].cast("timestamp"))

102

51

27/05/2020

EventTime and Window

Operations: Example 4

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

103

Event Time and Window

Operations: Example 4

Filter data
Use the standard filter transformation
fullReadingsDFreadingsDF- filte("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for in each window.

windowDuration= 2 seconds

no overlapping windows

countsDF=fullReadingsDF
.groupBy(window(fullReadingsDF.timestamyg'2 seconds"))
agg({"™":"count"})\

.sort("window")

104

52

27/05/2020

EventTime and Window

Operations: Example 4

Filter data
Use the standard filter transformation
fullReadingsDE readingsDF filte("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for in each window.

windowDuration= 2 seconds

no overlapping windows

countsDF=fullReadingsDE
.groupBy(window(fullReadingsDF.timestamg'2 seconds"))
.agg({™""count"})\

.sort("window")

105

Event Time and Window

Operations: Example 4

The result of the structured streaming query will be stored/printed on
the console "sink"

complete output mode
(append mode cannot be used for aggregation queries)

queryCountWindowStreamWriter countsDR
writeStream\

.outputMode("complete”)\
.format("console")
.option("truncate”, "false")

Start the execution of the query (it will be executed until it is explicitly stopped)
gueryCountWindows= queryCountWindowStreamWriter.staf}

106

53

27/05/2020

Watermarking

B 000

Watermarking

Watermarking is a feature of Spark that allows
the user to specify the threshold of late data,
and allows the engine to accordingly clean up
old state
Results related to old evertimes are not
needed in many real streaming applications
They can be dropped to improve the efficiency of the
application
Keeping the state of old results is resource expensive
Every time new data are processed only recent
records are considered

108

54

Watermarking

Specifically, to run windowed queries for days, it

IS necessary for the system to bound the amount

of intermediate irmemory state it accumulates
This means the system needs to know when an old
aggregate can be dropped from the-memory state

because the application is not going to receive late
data for that aggregate any more

To enable this, in Spark 2.1, watermarking has
been introduced

109

Watermarking

Watermarking lets the Spark Structured Streaming
engine automatically track the current eventtime in
the data and attempt to clean up old state accordingly
You can define the watermark of a query by specifying
the event time column and the threshold on how late
the data is expected to be in terms of event time

For a specific window ending at time T, the engine will

maintain state and allow late data to update the state/the

result until

max event time seen by the engine <T + late threshold

In other words, late data within the threshold will be
aggregated, but data later tham+thresholdwill be
dropped

110

27/05/2020

55

27/05/2020

Join Operations

B 000

Join Operations

Spark Structured Streaming manages also
join operations
Between two streaminddataFrames

Between a streamindpataFrameand a static
DataFrame

The result of the streaming join is generated
incrementally

112

56

Join Operations

Join between two streaminBataFrames
For both input streams, past input streaming
data must be buffered/recorded in order to be
able to match every future input record with
past input data and accordingly generate joined
results
Too many resources are needed for storing all
the input data
Hence,old data must be discarded

You mustdefine watermark thresholds on both

Input streams such that the engine knows how
delayed the input can be and drop old data

113

Join Operations

The methods and

are used to join streaminjataFrames
The join method is similar to the one
available for statidataFrame

114

27/05/2020

57

Join Operations: Example

from pyspark.sql.functionsmport expr
impressions spark.readStream...
clicks =spark.readStream ...

Apply watermarks on eventime columns
impressionsWithWatermark impressions.withWatermargimpressionTimé, "2
hours")

clicksWithWatermarke= clicks.withWatermark"clickTime', "3 hours")

Join with evenitime constraints
impressionsWithWatermark.joif
clicksWithWatermark
expr("™™"
clickAdld=impressionAdIdAND clickTime>=impressionTimeAND
clickTime<=impressionTimet interval 1 hour

")

115

27/05/2020

58

