Spark Structured Streaming

What is Spark Structured Streaming?

- Structured Streaming is a scalable and fault-tolerant stream processing engine that is built on the Spark SQL engine
- Input data are represented by means of (streaming) DataFrames
- Structured Streaming uses the existing Spark SQL APIs to query data streams
 - The same methods we used for analyzing "static" DataFrames
- A set of specific methods that are used to define
 - Input and output streams
 - Windows

Input data model

- Each input data stream is modeled as a table that is being continuously appended
 - Every time new data arrive they are appended at the end of the table
 - i.e., each data stream is considered an unbounded input table

a

Input

- A stream of records retrieved from localhost:9999
- Each input record is a reading about the status of a station of a bike sharing system in a specific timestamp
- Each input reading has the format
 stationId, # free slots, # used slots, timestamp
- For each stationId, print on the standard output the total number of received input reading with a number of free slots equal to o
 - Print the requested information when new data are received by using the micro-batch processing mode
 - Suppose the batch-duration is set to 2 seconds

File source Reads files written in a directory as a stream of data Each line of the input file is an input record Supported file formats are text, csv, json, orc, parquet, .. Kafka source Reads data from Kafka

• Each Kafka message is one input record

- The readStream property of the SparkSession class is used to create DataStreamReaders
- The methods format() and option() of the DataStreamReader class are used to specify the input streams
 - Type, location, ...
- The method load() of the DataStreamReader class is used to return DataFrames associated with the input data streams

Transformations

Transformations are the same of DataFrames

 However, there are restrictions on some types of queries/transformations that cannot be executed incrementally

Outputs

Sinks

- They are instances of the class DataStreamWriter and are used to specify the external destinations and store the results in the external destinations
- File sink
 - Stores the output to a directory
 - Supported file formats are text, csv, json, orc, parquet,...
- Kafka sink
 - Stores the output to one or more topics in Kafka
- Foreach sink
 - Runs arbitrary computation on the output records

Output modes

- We must define how we want Spark to write output data in the external destinations
- Supported output modes:
 - Append
 - Complete
 - Update
- The supported output mode depend on the query type

Output modes

- Complete mode
 - The whole computed result will be outputted to the sink after every trigger (computation)
 - This mode is supported for aggregation queries

Outputs

- The writeStream property of the SparkSession class is used to create DataStreamWriters
- The methods outputMode(), format() and option() of the DataStreamWriter class are used to specify the output destination
 - Data format, location, output mode, etc.

Query run/execution

- To start executing the defined queries/structured streaming applications you must explicitly invoke the start() action on the defined sinks (DataStreamWriter objects associated with the external destinations in which the results will be stored)
- You can start several queries in the same application
- Structured streaming queries run forever
 - You must explicitly stop/kill them otherwise they will run forever

Trigger Types

 If the previous micro-batch takes longer than the interval to complete (i.e. if an interval boundary is missed), then the next micro-batch will start as soon as the previous one completes

Trigger Types

- This trigger type is useful when you want to periodically spin up a cluster, process everything that is available since the last period, and then shutdown the cluster
 - In some case, this may lead to significant cost savings

<section-header><section-header><list-item><list-item><list-item><list-item>

Problem specification

- Input
 - A stream of records retrieved from localhost:9999
 - Each input record is a reading about the status of a station of a bike sharing system in a specific timestamp
 - Each input reading has the format
 stationId,# free slots,#used slots,timestamp
- Output
 - For each input reading with a number of free slots equal to o print on the standard output the value of stationId and timestamp
 - Use the standard micro-batch processing mode

Sparks Structured Streaming: Example 1

from pyspark.sql.types import * from pyspark.sql.functions import split

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

42

Sparks Structured Streaming: Example 1

The input records are characterized by one single column called value # of type string

Example of an input record: \$1,0,3,2016-03-11 09:00:04

Define four more columns by splitting the input column value

New columns:

- # stationId
- # freeslots
- # usedslots
- # timestamp

readingsDF = recordsDF\

.withColumn("stationId", split(recordsDF.value, ',')[o].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

The input records are characterized by one single column called value # of type string

Example of an input record: s1,0,3,2016-03-11 09:00:04 # Define four more columns by splitting the input column value

For each new column you must specify:

- Name - The SQL function that is used to define its value in each record

The cast() method is used to specify the data type of each defined column.

readingsDF = recordsDF\

.withColumn("stationId", split(recordsDF.value, ',')[o].cast("string"))\ .withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\ .withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\ .withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

Sparks Structured Streaming: Example 1

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

Select stationid and timestamp # Use the standard select transformation stationIdTimestampDF = fullReadingsDF.select("stationId", "timestamp")

46

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

Select stationid and timestamp
Use the standard select transformation
stationIdTimestampDF = fullReadingsDF.select("stationId", "timestamp")

The result of the structured streaming query will be stored/printed on # the console "sink". # append output mode queryFilterStreamWriter = stationIdTimestampDF \ .writeStream \ .outputMode("append") \ .format("console")

Start the execution of the query (it will be executed until it is explicitly stopped) queryFilter = queryFilterStreamWriter.start()

49

Sparks Structured Streaming: Example 2

- Problem specification
 - Input
 - A stream of records retrieved from localhost:9999
 - Each input record is a reading about the status of a station of a bike sharing system in a specific timestamp
 - Each input reading has the format
 - stationId,# free slots,#used slots,timestamp
 - Output
 - For each stationId, print on the standard output the total number of received input reading with a number of free slots equal to o
 - Print the requested information when new data are received by using the standard micro-batch processing mode

from pyspark.sql.types import *
from pyspark.sql.functions import split

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

Sparks Structured Streaming: Example 2

The input records are characterized by one single column called value # of type string # Example of an input record: s1,0,3,2016-03-11 09:00:04 # Define four more columns by splitting the input column value # New columns: # - stationId # - freeslots # - usedslots # - usedslots # - timestamp readingsDF = recordsDF\ .withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\ .withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\ .withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\ .withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

52

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

53

Sparks Structured Streaming: Example 2

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

Count the number of readings with a number of free slots equal to o
for each stationId
The standard groupBy method is used
countsDF = fullReadingsDF\
.groupBy("stationId")\
.agg({"*":"count"})

The result of the structured streaming query will be stored/printed on # the console "sink" # complete output mode # (append mode cannot be used for aggregation queries) queryCountStreamWriter = countsDF\ .writeStream \ .outputMode("complete") \ .format("console")

Start the execution of the query (it will be executed until it is explicitly stopped) queryCount = queryCountStreamWriter.start()

Event Time and Window Operations

<section-header><list-item><list-item><list-item><list-item><list-item>

Event Time and Window Operations

For example

- Compute the number of events generated by each monitored IoT device every minute based on the event-time
 - For each window associated with one distinct minute consider only the data with an event-time inside that minute/window and compute the number of events for each IoT device
 - One computation for each minute/window
- You want to use the time when the data was generated (i.e., the event-time) rather than the time Spark receives them

Event Time and Window Operations: Example 3

- Problem specification
 - Input
 - A stream of records retrieved from localhost:9999
 - Each input record is a reading about the status of a station of a bike sharing system in a specific timestamp
 - Each input reading has the format
 - stationId,# free slots,#used slots,timestamp
 - timestamp is the event-time column

Event Time and Window Operations: Example 3

- Output
 - For each stationId, print on the standard output the total number of received input reading with a number of free slots equal to o in each window
 - The query is executed for each window
 - Set windowDuration to 2 seconds and no slideDuration
 - i.e., non-overlapped windows

Event Time and Window Operations: Example 3

from pyspark.sql.types import * from pyspark.sql.functions import split from pyspark.sql.functions import window

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

Event Time and Window Operations: Example 3

The input records are characterized by one single column called value # of type string # Example of an input record: s1,0,3,2016-03-11 09:00:04 # Define four more columns by splitting the input column value # New columns: # - stationId # - freeslots # - usedslots # - usedslots # - timestamp readingsDF = recordsDF\ .withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\ .withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\ .withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\ .withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

74

Event Time and Window Operations: Example 3

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

Event Time and Window Operations: Example 3

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

Count the number of readings with a number of free slots equal to o
for each stationId in each window.
windowDuration = 2 seconds
no overlapping windows
countsDF = fullReadingsDF\
.groupBy(window(fullReadingsDF.timestamp, "2 seconds"), "stationId")\
.agg({"*":"count"})\
.sort("window")

76

Event Time and Window Operations: Example 3	
<pre># Filter data # Use the standard filter transformation fullReadingsDF = readingsDF.filter("freeslots=o") # Count the number of readings with a number of free slots equal to o # for each stationId in each window. # windowDuration = 2 seconds # no overlapping windows countsDF = fullReadingsDF\ .groupBy((window(fullReadingsDF.timestamp, "2 seconds"), "stationId")\ .agg({"*":"count"})\ .sort("window") </pre>	
	77

Event Time and Window Operations: Example 3

The result of the structured streaming query will be stored/printed on # the console "sink" # complete output mode # (append mode cannot be used for aggregation queries) queryCountWindowStreamWriter = countsDF \ .writeStream \ .outputMode("complete") \ .format("console")\ .option("truncate", "false")

Start the execution of the query (it will be executed until it is explicitly stopped) queryCountWindow = queryCountWindowStreamWriter.start()

Late data: Running example

Output

- For each stationId, print on the standard output the total number of received input reading with a number of free slots equal to o in each window
- The query is executed for each window
- Set windowDuration to 2 seconds and no slideDuration
 - i.e., non-overlapped windows

Late data: Running example

- The code is the same of "Event Time and Window Operations: Example 3"
- Late data are automatically handled by Spark

Event Time and Window Operations: Example 4

- Problem specification
 - Input
 - A stream of records retrieved from localhost:9999
 - Each input record is a reading about the status of a station of a bike sharing system in a specific timestamp
 - Each input reading has the format
 stationId,# free slots,#used slots,timestamp
 - stationid,#freesiots,#used siots,timestamp
 - timestamp is the event-time column

Event Time and Window Operations: Example 4

Output

- For each window, print on the standard output the total number of received input reading with a number of free slots equal to o
- The query is executed for each window
- Set windowDuration to 2 seconds and no slideDuration
 - i.e., non-overlapped windows

Event Time and Window Operations: Example 4

Event Time and Window Operations: Example 4

from pyspark.sql.types import * from pyspark.sql.functions import split from pyspark.sql.functions import window

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

Event Time and Window Operations: Example 4

The input records are characterized by one single column called value # of type string # Example of an input record: s1,0,3,2016-03-11 09:00:04 # Define four more columns by splitting the input column value # New columns: # - stationId # - freeslots # - usedslots # - usedslots # - timestamp readingsDF = recordsDF\ .withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\ .withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\ .withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\ .withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

102

Event Time and Window Operations: Example 4

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

103

Event Time and Window Operations: Example 4

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=o")

Count the number of readings with a number of free slots equal to o
for in each window.
windowDuration = 2 seconds
no overlapping windows
countsDF = fullReadingsDF\
.groupBy(window(fullReadingsDF.timestamp, "2 seconds"))\
.agg({"*":"count"})\
.sort("window")

Event Time and Window Operations: Example 4

The result of the structured streaming query will be stored/printed on # the console "sink" # complete output mode # (append mode cannot be used for aggregation queries) queryCountWindowStreamWriter = countsDF \ .writeStream \ .outputMode("complete") \ .format("console")\ .option("truncate", "false")

Start the execution of the query (it will be executed until it is explicitly stopped) queryCountWindow = queryCountWindowStreamWriter.start()

- Watermarking is a feature of Spark that allows the user to specify the threshold of late data, and allows the engine to accordingly clean up old state
- Results related to old event-times are not needed in many real streaming applications
 - They can be dropped to improve the efficiency of the application
 - Keeping the state of old results is resource expensive
- Every time new data are processed only recent records are considered

Watermarking

- Specifically, to run windowed queries for days, it is necessary for the system to bound the amount of intermediate in-memory state it accumulates
 - This means the system needs to know when an old aggregate can be dropped from the in-memory state because the application is not going to receive late data for that aggregate any more
- To enable this, in Spark 2.1, watermarking has been introduced

110

Join Operations

- Join between two streaming DataFrames
- For both input streams, past input streaming data must be buffered/recorded in order to be able to match every future input record with past input data and accordingly generate joined results
- Too many resources are needed for storing all the input data
- Hence, old data must be discarded
 - You must define watermark thresholds on both input streams such that the engine knows how delayed the input can be and drop old data

Join Operations: Example

from pyspark.sql.functions import expr impressions = spark.readStream. ... clicks = spark.readStream. ...

Apply watermarks on event-time columns
impressionsWithWatermark = impressions.withWatermark("impressionTime", "2
hours")

clicksWithWatermark = clicks.withWatermark("clickTime", "3 hours")

Join with event-time constraints
impressionsWithWatermark.join(
 clicksWithWatermark,
 expr("""
 clickAdld = impressionAdld AND clickTime >= impressionTime AND
 clickTime <= impressionTime + interval 1 hour
 """))</pre>