
27/05/2020

1

ÁStructured Streaming is a scalable and fault-tolerant
stream processing engine that is built on the Spark
SQL engine

Á Input data are represented by means of (streaming)
DataFrames

ÁStructured Streaming uses the existing Spark SQL
APIs to query data streams
Á4ÈÅ ÓÁÍÅ ÍÅÔÈÏÄÓ ×Å ÕÓÅÄ ÆÏÒ ÁÎÁÌÙÚÉÎÇ ȰÓÔÁÔÉÃȱ

DataFrames
ÁA set of specific methods that are used to define
ÁInput and output streams
ÁWindows

27/05/2020

2

ÁEach input data stream is modeled as a table
that is being continuously appended

ÁEvery time new data arrive they are appended at
the end of the table

Ái.e., each data stream is considered an
unbounded input table

ÁNew input data in the stream = new rows
appended to an unbounded table

27/05/2020

3

ÁThe expressed queries are incremental queries
that are run incrementally on the unbounded
input tables
ÁThe arrive of new data triggers the execution of the

incremental queries
ÁThe result of a query at a specific timestamp is the

one obtained by running the query on all the data
arrived until that timestamp
ǐÉȢÅȢȟ Ȱstateful ÑÕÅÒÉÅÓȱ ÁÒÅ ÅØÅÃÕÔÅÄ

ÁAggregation queries combine new data with the
previous results to optimize the computation of the
new results

ÁThe queries can be executed

ÁAs micro-batch queries with a fixed batch interval

ǐStandard behavior

ǐExactly-once fault-tolerance guarantees

ÁAs continuous queries

ǐExperimental

ǐAt-least-once fault-tolerance guarantees

27/05/2020

4

ÁIn this example the (micro-batch) query is
executed every 1 second

ÁIn this example the (micro-batch) query is
executed every 1 second Note that every time the query is

executed, all data received so far are
considered

27/05/2020

5

Á Input
ÁA stream of records retrieved from localhost:9999

ÁEach input record is a reading about the status of a station
of a bike sharing system in a specific timestamp

ÁEach input reading has the format
ǐstationId,# free slots,#used slots,timestamp

ÁFor each stationId, print on the standard output the
total number of received input reading with a number
of free slots equal to 0
ÁPrint the requested information when new data are

received by using the micro-batch processing mode

ÁSuppose the batch-duration is set to 2 seconds

9

10

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

4

6

8

10

27/05/2020

6

11

4

6

8

10

Time (s)

Console stdout

4

6

8

10

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04

12

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

27/05/2020

7

13

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,1

4

6

8

10

14

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,1

4

6

8

10

27/05/2020

8

15

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,1

s1,2
s2,1

4

6

8

10

16

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,10,3,2016-03-11 09:00:09

s1,1

s1,2
s2,1

4

6

8

10

27/05/2020

9

17

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,10,3,2016-03-11 09:00:09

s1,1

s1,2
s2,1

s1,2
s2,1

4

6

8

10

ÁInput sources
ÁTransformations
ÁOutputs

ÁExternal destinations/sinks

ÁOutput Modes

ÁQuery run/execution
ÁTriggers

27/05/2020

10

ÁFile source

ÁReads files written in a directory as a stream of
data

ÁEach line of the input file is an input record

ÁSupported file formats are text, csv, json, orc,
parquet, ..

ÁKafka source

ÁReads data from Kafka

ÁEach Kafka message is one input record

19

ÁSocket source (for debugging purposes)

ÁReads UTF8 text data from a socket connection

ÁThis type of source does not provide end-to-end
fault -tolerance guarantees

ÁRate source (for debugging purposes)

ÁGenerates data at the specified number of rows
per second

ÁEach generated row contains a timestamp and
value of type long

20

27/05/2020

11

ÁThe readStream property of the
SparkSession class is used to create
DataStreamReaders
ÁThe methods format() and option() of the

DataStreamReader class are used to specify
the input streams
Á4ÙÐÅȟ ÌÏÃÁÔÉÏÎȟ ȣ

ÁThe method load() of the DataStreamReader
class is used to return DataFrames associated
with the input data streams

21

ÁIn this example the (streaming) DataFrame
recordsDF is created and associated with the
input stream of type socket

ÁAddress: localhost

ÁInput port: 9999
recordsDF = spark.readStream \

.format("socket") \

.option("host", "localhost") \

.option("port", 9999) \

.load()

22

27/05/2020

12

ÁTransformations are the same of DataFrames
ÁHowever, there are restrictions on some

types of queries/transformations that
cannot be executed incrementally

23

ÁUnsupported operations
ÁMultiple streaming aggregations (i.e. a chain of

aggregations on a streaming DataFrame)

ÁLimit and take first N rows

ÁDistinct operations

ÁSorting operations are supported on streaming
DataFrames only after an aggregation and in
complete output mode

ÁFew types of outer joins on streaming
DataFrames are not supported

24

27/05/2020

13

ÁSinks
ÁThey are instances of the class DataStreamWriter and

are used to specify the external destinations and store
the results in the external destinations

ÁFile sink
ÁStores the output to a directory
ÁSupported file formats are text, csv, json, orc,

parquet, ..
ÁKafka sink
ÁStores the output to one or more topics in Kafka

ÁForeach sink
ÁRuns arbitrary computation on the output records

25

ÁConsole sink (for debugging purposes)
ÁPrints the computed output to the console every time

a new batch of records has been analyzed
ÁThis should be used for debugging purposes on low

data volumes as the entire output is collected and
ÓÔÏÒÅÄ ÉÎ ÔÈÅ ÄÒÉÖÅÒȭÓ ÍÅÍÏÒÙ ÁÆÔÅÒ ÅÁÃÈ ÃÏÍÐÕÔÁÔÉÏÎ

ÁMemory sink (for debugging purposes)
ÁThe output is stored in memory as an in-memory

table
ÁThis should be used for debugging purposes on low

data volumes as the entire output is collected and
ÓÔÏÒÅÄ ÉÎ ÔÈÅ ÄÒÉÖÅÒȭÓ ÍÅÍÏÒÙ

26

27/05/2020

14

ÁWe must define how we want Spark to write
output data in the external destinations
ÁSupported output modes:

ÁAppend

ÁComplete

ÁUpdate

ÁThe supported output mode depend on the
query type

27

ÁAppend mode

ÁDefault mode

ÁOnly the new rows added to the computed result
since the last trigger (computation) will be outputted

ÁThis mode is supported for only those queries where
rows added to the result is never going to change

ǐThis mode guarantees that each row will be output only once

ÁQueries with only select, filter, map, flatMap, filter,
join, etc. support append mode

28

27/05/2020

15

ÁComplete mode

ÁThe whole computed result will be outputted to
the sink after every trigger (computation)

ÁThis mode is supported for aggregation queries

29

ÁUpdate mode
ÁOnly the rows in the computed result that were

updated since the last trigger (computation) will
be outputted

ÁThe complete list of supported output modes

for each query type is available at
Áhttps://spark.apache.org/docs/latest/structured-

streaming-programming-guide.html#output-
modes

30

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

27/05/2020

16

ÁThe writeStream property of the
SparkSession class is used to create
DataStreamWriters
ÁThe methods outputMode (), format() and

option() of the DataStreamWriter class are
used to specify the output destination

ÁData format, location, output mode, etc.

31

ÁIn this example

ÁThe DataStreamWriter streamWriterRes is
created and associated with the console

ÁThe output mode is set to append

streamWriterRes = stationIdTimestampDF \

.writeStream \

.outputMode("append") \

.format("console")

32

27/05/2020

17

ÁTo start executing the defined queries/structured
streaming applications you must explicitly
invoke the start() action on the defined sinks
(DataStreamWriter objects associated with the
external destinations in which the results will be
stored)

ÁYou can start several queries in the same
application

ÁStructured streaming queries run forever
ÁYou must explicitly stop/kill them otherwise they will

run forever

33

ÁFor each Spark structured streaming query we
can specify when new input data must be
processed

ÁAnd whether the query is going to be executed

Áas a micro-batch query with a fixed batch interval

Áor as a continuous processing query (experimental)

ÁThe trigger type for each query is specified by
means of the trigger() method of the
DataStreamWriter class

34

27/05/2020

18

ÁNo trigger type is explicitly specified

ÁDefault trigger setting

ÁThe query will be executed in micro-batch mode

ÁEach micro-batch is generated and processed as
soon as the previous micro-batch has been
processed

35

ÁFixed interval micro-batches

ÁThe query will be executed in micro-batch mode

ÁMicro-batches will be processed at the user-
specified intervals

ǐThe parameter processingTime of the trigger method()
is used to specify the micro-batch size

ǐIf the previous micro-batch completes within its interval,
then the engine will wait until the interval is over before
processing the next micro-batch

36

27/05/2020

19

ǐIf the previous micro-batch takes longer than the
interval to complete (i.e. if an interval boundary is
missed), then the next micro-batch will start as soon as
the previous one completes

37

ÁOne-time micro-batch

ÁThe query will be executed in micro-batch mode

ÁBut the query will be executed only one time on
one single micro-batch containing all the available
data of the input stream

ǐAfter the single execution the query stops on its own

38

27/05/2020

20

ÁThis trigger type is useful when you want to
periodically spin up a cluster, process everything
that is available since the last period, and then
shutdown the cluster

ǐIn some case, this may lead to significant cost savings

39

ÁContinuous with fixed checkpoint interval
(experimental)

ÁThe query will be executed in the new low-latency,
continuous processing mode

ÁAt-least-once fault-tolerance guarantees

40

27/05/2020

21

ÁProblem specification
ÁInput
ǐA stream of records retrieved from localhost:9999

ǐEach input record is a reading about the status of a station of
a bike sharing system in a specific timestamp

ǐEach input reading has the format
ǐstationId,# free slots,#used slots,timestamp

ÁOutput
ǐFor each input reading with a number of free slots equal to 0

print on the standard output the value of stationId and
timestamp

ǐUse the standard micro-batch processing mode

41

from pyspark.sql.types import *
from pyspark.sql.functions import split

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

42

27/05/2020

22

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,2016-03-11 09:00:04
Define four more columns by splitting the input column value
New columns:
- stationId
- freeslots
- usedslots
- timestamp

readingsDF = recordsDF\
.withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

43

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,2016-03-11 09:00:04
Define four more columns by splitting the input column value
New columns:
- stationId
- freeslots
- usedslots
- timestamp

readingsDF = recordsDF\
.withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

44

withColumn () is used to add new columns.
It is a standard DataFrame method.

withColumn () returns a DataFrame with the same columns
of the input DataFrame and the new defined column

27/05/2020

23

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,2016-03-11 09:00:04
Define four more columns by splitting the input column value
New columns:
- stationId
- freeslots
- usedslots
- timestamp

readingsDF = recordsDF\
.withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

45

For each new column you must specify:
- Name
- The SQL function that is used to define its value in each record

The cast() method is used to specify the data type of each defined column.

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Select stationid and timestamp
Use the standard select transformation
stationIdTimestampDF = fullReadingsDF.select("stationId", "timestamp")

46

27/05/2020

24

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Select stationid and timestamp
Use the standard select transformation
stationIdTimestampDF = fullReadingsDF.select("stationId", "timestamp")

47

Standard DataFrame transformations

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Select stationid and timestamp
Use the standard select transformation
stationIdTimestampDF = fullReadingsDF.select("stationId", "timestamp")

The result of the structured streaming query will be stored/printed on
Υ ÔÈÅ ÃÏÎÓÏÌÅ ΅ÓÉÎËȰȢ
append output mode
queryFilterStreamWriter = stationIdTimestampDF \
.writeStream \
.outputMode("append") \
.format("console")

48

27/05/2020

25

Start the execution of the query (it will be executed until it is explicitly stopped)
queryFilter = queryFilterStreamWriter.start()

49

ÁProblem specification
ÁInput
ǐA stream of records retrieved from localhost:9999
ǐEach input record is a reading about the status of a station of

a bike sharing system in a specific timestamp
ǐEach input reading has the format
ǐstationId,# free slots,#used slots,timestamp

ÁOutput
ǐFor each stationId, print on the standard output the total

number of received input reading with a number of free slots
equal to 0
ǐPrint the requested information when new data are received

by using the standard micro-batch processing mode

50

27/05/2020

26

from pyspark.sql.types import *
from pyspark.sql.functions import split

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

51

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,2016-03-11 09:00:04
Define four more columns by splitting the input column value
New columns:
- stationId
- freeslots
- usedslots
- timestamp

readingsDF = recordsDF\
.withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

52

27/05/2020

27

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

53

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for each stationId
The standard groupBy method is used
countsDF = fullReadingsDF\
.groupBy("stationId")\
.agg({"*":"count"})

54

27/05/2020

28

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for each stationId
The standard groupBy method is used
countsDF = fullReadingsDF\
.groupBy("stationId")\
.agg({"*":"count"})

55

Standard DataFrame transformations

The result of the structured streaming query will be stored/printed on
the console "sink"
complete output mode
(append mode cannot be used for aggregation queries)
queryCountStreamWriter = countsDF \
.writeStream \
.outputMode("complete") \
.format("console")

Start the execution of the query (it will be executed until it is explicitly stopped)
queryCount = queryCountStreamWriter.start()

56

27/05/2020

29

57

ÁInput streaming records are usually
characterized by a time information

ÁIt is the time when the data was generated

ÁIt is usually called event-time

ÁFor many applications, you want to operate
by taking into consideration the event-time
and windows containing data associated with
the same event-time range

58

27/05/2020

30

ÁFor example
ÁCompute the number of events generated by each

monitored IoT device every minute based on the
event-time
ǐFor each window associated with one distinct minute

consider only the data with an event-time inside that
minute/window and compute the number of events for each
IoT device

ǐOne computation for each minute/window

ÁYou want to use the time when the data was
generated (i.e., the event-time) rather than the time
Spark receives them

59

ÁSpark allows defining windows based on the
time-event input column
ÁAnd then apply aggregation functions over

each window

60

27/05/2020

31

ÁFor each structured streaming query on which
you want to apply a window computation you
must
ÁSpecify the name of the time-event column in the

input (streaming) DataFrame
ÁThe characteristics of the (sliding) windows
ǐwindowDuration
ǐslideDuration
ǐDo not set it if you want non-overlapped windows, i.e., if you want to

a slideDuration equal to windowDuration

ÁYou can set different window characteristics for
each query of your application

61

ÁThe window(timeColumn,
windowDuration , slideDuration=None)
function is used inside the standard
groupBy() one to specify the characteristics
of the windows
ÁWindows can be used only with queries that

are applying aggregation functions

62

27/05/2020

32

ÁProblem specification

ÁInput

ǐA stream of records retrieved from localhost:9999

ǐEach input record is a reading about the status of a
station of a bike sharing system in a specific timestamp

ǐEach input reading has the format
ǐstationId,# free slots,#used slots,timestamp

ǐtimestamp is the event-time column

63

ÁOutput

ǐFor each stationId, print on the standard output the total
number of received input reading with a number of free
slots equal to 0 in each window

ǐThe query is executed for each window

ǐSet windowDuration to 2 seconds and no slideDuration
ǐi.e., non-overlapped windows

64

27/05/2020

33

65

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

4

6

8

10

66

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

27/05/2020

34

67

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1

68

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1

The returned result has a column called window.
It contains the time slot associated with the window
[from timestamp, to timestamp)

27/05/2020

35

69

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

4

6

8

10

70

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s2,1

27/05/2020

36

71

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,10,3,2016-03-11 09:00:09

4

6

8

10

72

4

6

8

10

Time (s)

Console stdout Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,10,3,2016-03-11 09:00:09

4

6

8

10
[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s2,1

27/05/2020

37

from pyspark.sql.types import *
from pyspark.sql.functions import split
from pyspark.sql.functions import window

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

73

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,2016-03-11 09:00:04
Define four more columns by splitting the input column value
New columns:
- stationId
- freeslots
- usedslots
- timestamp

readingsDF = recordsDF\
.withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

74

27/05/2020

38

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

75

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for each stationId in each window.
windowDuration = 2 seconds
no overlapping windows
countsDF = fullReadingsDF\
.groupBy(window(fullReadingsDF.timestamp, "2 seconds"), "stationId")\
.agg({"*":"count"})\
.sort("window")

76

27/05/2020

39

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for each stationId in each window.
windowDuration = 2 seconds
no overlapping windows
countsDF = fullReadingsDF\
.groupBy(window(fullReadingsDF.timestamp, "2 seconds"), "stationId")\
.agg({"*":"count"})\
.sort("window")

77

Specify window characteristics

The result of the structured streaming query will be stored/printed on
the console "sink"
complete output mode
(append mode cannot be used for aggregation queries)
queryCountWindowStreamWriter = countsDF \
.writeStream \
.outputMode("complete") \
.format("console")\
ȢÏÐÔÉÏÎɉ΅ÔÒÕÎÃÁÔÅ΅ȟ ΅ÆÁÌÓÅȰɊ

Start the execution of the query (it will be executed until it is explicitly stopped)
queryCountWindow = queryCountWindowStreamWriter.start()

78

27/05/2020

40

ÁSparks handles data that have arrived later
than expected based on its event-time
ÁThey are called late data

ÁSpark has full control over updating old
aggregates when there are late data
ÁEvery time new data are processed the result is

computed by combining old aggregate values and
the new data by considering the event-time
column instead of the time Spark receives the
data

79

ÁProblem specification

ÁInput

ǐA stream of records retrieved from localhost:9999

ǐEach input record is a reading about the status of a
station of a bike sharing system in a specific timestamp

ǐEach input reading has the format
ǐstationId,# free slots,#used slots,timestamp

ǐtimestamp is the event-time column

80

27/05/2020

41

ÁOutput

ǐFor each stationId, print on the standard output the total
number of received input reading with a number of free
slots equal to 0 in each window

ǐThe query is executed for each window

ǐSet windowDuration to 2 seconds and no slideDuration
ǐi.e., non-overlapped windows

81

82

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

4

6

8

10

27/05/2020

42

83

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

84

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1

27/05/2020

43

85

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

4

6

8

10

86

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s2,1

27/05/2020

44

87

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,0,3,2016-03-11 09:00:06
s1,10,3,2016-03-11 09:00:09

4

6

8

10

88

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,0,3,2016-03-11 09:00:06
s1,10,3,2016-03-11 09:00:09

4

6

8

10
Late data that was generated at 2016-03-11 09:00:06
but arrived at 2016-03-11 09:00:08

27/05/2020

45

89

4

6

8

10

Time (s)

Console stdout Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,0,3,2016-03-11 09:00:06
s1,10,3,2016-03-11 09:00:09

4

6

8

10
[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s2,1

90

4

6

8

10

Time (s)

Console stdout Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,0,3,2016-03-11 09:00:06
s1,10,3,2016-03-11 09:00:09

4

6

8

10
[2016-03-11 09:00:04, 2016-03-11 09:00:06],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s1,1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],s2,1

The result consider also late data and assign them to
the right window by considering the event-time
information

27/05/2020

46

Á4ÈÅ ÃÏÄÅ ÉÓ ÔÈÅ ÓÁÍÅ ÏÆ Ȱ%ÖÅÎÔ 4ÉÍÅ ÁÎÄ
Window Operationsȡ %ØÁÍÐÌÅ Ωȱ
ÁLate data are automatically handled by Spark

91

ÁProblem specification

ÁInput

ǐA stream of records retrieved from localhost:9999

ǐEach input record is a reading about the status of a
station of a bike sharing system in a specific timestamp

ǐEach input reading has the format
ǐstationId,# free slots,#used slots,timestamp

ǐtimestamp is the event-time column

92

27/05/2020

47

ÁOutput

ǐFor each window, print on the standard output the total
number of received input reading with a number of free
slots equal to 0

ǐThe query is executed for each window

ǐSet windowDuration to 2 seconds and no slideDuration
ǐi.e., non-overlapped windows

93

94

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

4

6

8

10

27/05/2020

48

95

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

96

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],1

27/05/2020

49

97

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

4

6

8

10

98

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

4

6

8

10

[2016-03-11 09:00:04, 2016-03-11 09:00:06],1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],2

27/05/2020

50

99

4

6

8

10

Time (s)

Console stdout

Time (s)

Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,10,3,2016-03-11 09:00:09

4

6

8

10

100

4

6

8

10

Time (s)

Console stdout Input stream

s1,0,3,2016-03-11 09:00:04
s2,2,3,2016-03-11 09:00:05

s1,0,3,2016-03-11 09:00:06
s2,0,3,2016-03-11 09:00:07
s11,12,3,2016-03-11 09:00:06

s1,10,3,2016-03-11 09:00:09

4

6

8

10
[2016-03-11 09:00:04, 2016-03-11 09:00:06],1
[2016-03-11 09:00:06, 2016-03-11 09:00:08],2

27/05/2020

51

from pyspark.sql.types import *
from pyspark.sql.functions import split
from pyspark.sql.functions import window

Create a "receiver" DataFrame that will connect to localhost:9999
recordsDF = spark.readStream\
.format("socket") \
.option("host", "localhost") \
.option("port", 9999) \
.load()

101

The input records are characterized by one single column called value
of type string
Example of an input record: s1,0,3,2016-03-11 09:00:04
Define four more columns by splitting the input column value
New columns:
- stationId
- freeslots
- usedslots
- timestamp

readingsDF = recordsDF\
.withColumn("stationId", split(recordsDF.value, ',')[0].cast("string"))\
.withColumn("freeslots", split(recordsDF.value, ',')[1].cast("integer"))\
.withColumn("usedslots", split(recordsDF.value, ',')[2].cast("integer"))\
.withColumn("timestamp", split(recordsDF.value, ',')[3].cast("timestamp"))

102

27/05/2020

52

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

103

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for in each window.
windowDuration = 2 seconds
no overlapping windows
countsDF = fullReadingsDF\
.groupBy(window(fullReadingsDF.timestamp, "2 seconds"))\
.agg({"*":"count"})\
.sort("window")

104

27/05/2020

53

Filter data
Use the standard filter transformation
fullReadingsDF = readingsDF.filter("freeslots=0")

Count the number of readings with a number of free slots equal to 0
for in each window.
windowDuration = 2 seconds
no overlapping windows
countsDF = fullReadingsDF\
.groupBy(window(fullReadingsDF.timestamp, "2 seconds"))\
.agg({"*":"count"})\
.sort("window")

105

We define one group for each window

The result of the structured streaming query will be stored/printed on
the console "sink"
complete output mode
(append mode cannot be used for aggregation queries)
queryCountWindowStreamWriter = countsDF \
.writeStream \
.outputMode("complete") \
.format("console")\
.option("truncate", "false")

Start the execution of the query (it will be executed until it is explicitly stopped)
queryCountWindow = queryCountWindowStreamWriter.start()

106

27/05/2020

54

107

ÁWatermarking is a feature of Spark that allows
the user to specify the threshold of late data,
and allows the engine to accordingly clean up
old state

ÁResults related to old event-times are not
needed in many real streaming applications
ÁThey can be dropped to improve the efficiency of the

application
ÁKeeping the state of old results is resource expensive

ÁEvery time new data are processed only recent
records are considered

108

27/05/2020

55

ÁSpecifically, to run windowed queries for days, it
is necessary for the system to bound the amount
of intermediate in-memory state it accumulates

ÁThis means the system needs to know when an old
aggregate can be dropped from the in-memory state
because the application is not going to receive late
data for that aggregate any more

ÁTo enable this, in Spark 2.1, watermarking has
been introduced

109

ÁWatermarking lets the Spark Structured Streaming
engine automatically track the current event time in
the data and attempt to clean up old state accordingly

ÁYou can define the watermark of a query by specifying
the event time column and the threshold on how late
the data is expected to be in terms of event time
ÁFor a specific window ending at time T, the engine will

maintain state and allow late data to update the state/the
result until
max event time seen by the engine < T + late threshold

ÁIn other words, late data within the threshold will be
aggregated, but data later than T+threshold will be
dropped

110

27/05/2020

56

111

ÁSpark Structured Streaming manages also
join operations

ÁBetween two streaming DataFrames

ÁBetween a streaming DataFrame and a static
DataFrame

ÁThe result of the streaming join is generated
incrementally

112

27/05/2020

57

ÁJoin between two streaming DataFrames
ÁFor both input streams, past input streaming

data must be buffered/recorded in order to be
able to match every future input record with
past input data and accordingly generate joined
results

ÁToo many resources are needed for storing all
the input data

ÁHence, old data must be discarded
ÁYou must define watermark thresholds on both

input streams such that the engine knows how
delayed the input can be and drop old data

113

ÁThe methods join() and withWatermark ()
are used to join streaming DataFrames
ÁThe join method is similar to the one

available for static DataFrame

114

27/05/2020

58

from pyspark.sql.functions import expr
impressions = spark.readStream. ...
clicks = spark.readStream. ...

Apply watermarks on event-time columns
impressionsWithWatermark = impressions.withWatermark("impressionTime", "2

hours")

clicksWithWatermark = clicks.withWatermark("clickTime", "3 hours")

Join with event-time constraints
impressionsWithWatermark.join(
 clicksWithWatermark,
 expr("""
 clickAdId = impressionAdId AND clickTime >= impressionTime AND
 clickTime <= impressionTime + interval 1 hour
 """))

115

