
21/05/2020

1

21/05/2020

2

 In 1998 Carlo Strozzi’s lightweight, open-
source relational database that did not
expose the standard SQL interface

 In 2009 Johan Oskarsson’s (Last.fm)
organizes an event to discuss recent
advances on non-relational databases. A new,
unique, short hashtag to promote the event
on Twitter was needed: #NoSQL

horizontal
scalability

no joins

Exam

Course
number

Student ID

Mark

Student

Student ID

Name

Surname

Course

Course
number

Name

Professor

schema-less
(no tables, implicit schema)

Student
ID

Name Surname

S123456 Mario Rossi

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset

21/05/2020

3

Relational databases
Non-Relational

databases

Table-based, each record is a structured
row

Specialized storage solutions, e.g,
document-based, key-value pairs, graph
databases, columnar storage

Predefined schema for each table,
changes allowed but usually blocking
(expensive in distributed and live
environments)

Schema-less, schema-free, schema
change is dynamic for each document,
suitable for semi-structured
or un-structured data

Vertically scalable, i.e., typically scaled
by increasing the power of the
hardware

Horizontally scalable, NoSQL
databases are scaled by increasing the
databases servers in the pool of
resources to reduce the load

Relational databases
Non-Relational

databases
Use SQL (Structured Query Language)
for defining and manipulating the data,
very powerful

Custom query languages, focused on
collection of documents, graphs, and
other specialized data structures

Suitable for complex queries, based on
data joins

No standard interfaces to perform
complex queries, no joins

Suitable for flat and structured data
storage

Suitable for complex (e.g., hierarchical)
data, similar to JSON and XML

Examples: MySQL, Oracle, Sqlite,
Postgres and Microsoft SQL Server

Examples: MongoDB, BigTable, Redis,
Cassandra, HBase and CouchDB

21/05/2020

4

 Pros
 Work with structured data
 Support strict ACID transactional consistency
 Support joins
 Built-in data integrity
 Large eco-system
 Relationships via constraints
 Limitless indexing
 Strong SQL
 OLTP and OLAP
 Most off-the-shelf applications run on RDBMS

 Cons

 Do not scale out horizontally (concurrency and
data size) – only vertically, unless use sharding

 Data is normalized, meaning lots of joins,
affecting speed

 Difficulty in working with semi-structured data

 Schema-on-write

21/05/2020

5

 Pros
 Work with semi-structured data (JSON, XML)
 Scale out (horizontal scaling – parallel query

performance, replication)
 High concurrency, high volume random reads and

writes
 Massive data stores
 Schema-free, schema-on-read
 Support records/documents with different fields
 High availability
 Speed, due to not having to join tables

 Cons
 Do not support strict ACID transactional consistency
 Data is denormalized, requiring mass updates (e.g.,

product name change)
 Do not have built-in data integrity (must do in code)
 No relationship enforcement
 Limited indexing
 Weak SQL
 Slow mass updates
 Use 10-50 more space (replication, denormalized,

documents)
 Difficulty tracking schema changes over time

21/05/2020

6

 (Logical) Data model
 It is a set of constructs for representing the

information
 Storage model
 How the DBMS stores and manipulates the data

internally
 A data model is usually independent of the

storage model
 In practice we need at least some insight to

achieve good performances

11

 Data model for relational systems

 Relational model

▪ tables, columns and rows

 Data models for NoSQL systems

 Aggregate models

▪ key-value based model

▪ Document based model

▪ column-family based model

 Graph-based models

12

21/05/2020

7

 The dominant data model of the last decades
was the relational data model

 Relational data model

 It can be represented as a set of tables

 Each table has rows, with each row representing
an object of interest

▪ We describe objects through columns

 A column may refer to another row in the same or
different table (relationship)

13

 The relational model takes the information
that we want to store and divides it into
tables and tuples (rows)

 However, a tuple is a limited data structure

 It captures a set of values

 We can’t nest one tuple within another to get
nested records

 Nor we can put a list of values or tuple within
another

14

21/05/2020

8

 Data are modeled as units that have a
complex structure

 A more complex structure than just a set of tuples

 Complex records with

▪ Simple fields

▪ Lists

▪ Maps

▪ Records nested inside other records

15

 Aggregate is a term coming from Domain-
Driven Design

 An aggregate is a collection of related objects that
we wish to treat as a unit for data manipulation,
management, and consistency

 We work with data in terms of aggregates
 We like to update aggregates with atomic

operations

16 http://pbdmng.datatoknowledge.it/readingMaterial/Evans03.pdf

21/05/2020

9

 With aggregates we can easier work on a
cluster
 They are “independent” units

 Aggregates are also easier for application
programmer to work since solve the
impedance mismatch problem of relational
databases
 There is a strict “matching” between the objects

used inside programs and the “units/complex
records” stored in the databases

17

 We are building an e-
commerce website

 Stored information

 Users

 Products

 Orders

 Shipping addresses

 Billing addresses

 Payment data

18

21/05/2020

10

 Relational model

 Everything is normalized

 No data is repeated in
multiple tables

 We have referential
integrity

19

20

21/05/2020

11

 We have two
aggregates in this
example model

 Customers and

 Orders

21

// (Single) Customer
{
 "id": 1,
 "name": "Fabio",
 "billingAddresses": [
 {
 "city": "Bari"
 }
]
}

//(Single) Order
{
 "id": 99,
 "customerId": 1,
 "orderItems": [
 {
 "productId": 27,
 "price": 34,
 "productName": "Scala in Action”
 }],
 "shippingAddress": [{"city": "Bari”}],
 "orderPayment": [
 { "ccinfo": "100-432423-545-134",
 "txnId": "afdfsdfsd",
 "billingAddress": [{"city": "Bari” }]
 }]
}

22

21/05/2020

12

 In the example aggregate model there are
two “complex types” of records

 Customer

▪ Each customer record contains the customer profile,
including his/her billing addresses

 Order

▪ Each order record contains all the data about one order

 Data are denormalized and some information
is replicated

23

 The solution (data model) is domain-driven

 The aggregates are related to the expected usage
of the data

 In the reported example we suppose to
frequently read/write

 Customer profiles (including shipping addresses)

 Orders, with all the related information

 24

21/05/2020

13

25

 We have one
aggregate in this
model

 Customers

26

21/05/2020

14

// (Single) Customer
{
 "id": 1,
 "name": "Fabio",
 "billingAddresses": [
 {
 "city": "Bari"
 }
]
 "orders": [
 {
 "id": 99,
 "orderItems": [
 { "productId": 27,
 "price": 34,
 "productName": "Scala in Action”
 }],
 "shippingAddress": [{"city": "Bari”}],
 "orderPayment": [
 { "ccinfo": "100-432423-545-134",
 "txnId": "afdfsdfsd",
 "billingAddress": [{"city": "Bari” }]
 }]
 }]
}

27

 No universal answer for how to draw aggregate
boundaries

 It depends entirely on how you tend to
manipulate data
 Accesses on a single order at a time and a single

customer at a time
▪ First solution

 Accesses on one customer at a time with all her orders
▪ Second solution

 Context-specific
 Some applications will prefer one or the other

28

21/05/2020

15

 The focus is on the unit(s) of interaction with
the data storage

 Pros:

 It helps greatly when running on a cluster of nodes

▪ The data of each “complex record” will be manipulated
together, and thus should the stored on the same node

 Cons:

 An aggregate structure may help with some data
interactions but be an obstacle for others

29

 Key-value model
 Column-family based model
 Document-based model

30

21/05/2020

16

 Strongly aggregate-
oriented
 Lots of aggregates
 Each aggregate has a key

 Data model:
 A set of <key,value> pairs
 Value: an aggregate

instance
 The aggregate is opaque

to the database
 Just a big blob of mostly

meaningless bit
 Access to an aggregate
 Lookup based on its key

31

 Strongly aggregate-
oriented
 Lots of aggregates

 Each aggregate has a
key

 Data model: a two-
level map structure:
 A set of <row-key,

aggregate> pairs

 Each aggregate is a
group of pairs <column-
key,value>

32

21/05/2020

17

 Columns can be
organized in families

 Columns of the same
family are usually
accessed together

 Access to an aggregate

 Accessing the row as a
whole

 Picking out particular
columns (of the same
family)

33

 Operations also allow picking out a particular
column
 get('1234', 'name')

 Each column
 Has to be part of a single column family

 Acts as unit for access
 You can add any column to any row, and rows

can have very different columns
 You can model a list of items by making each

item a separate column

30

21/05/2020

18

 Two ways to look at data

 Row-oriented

▪ Each row is an aggregate

▪ Column families represent useful chunks of data within
that aggregate

 Column-oriented

▪ Each column family defines a record type

▪ Row as the join of records in all column families

30

 Strongly aggregate-oriented
 Lots of aggregates
 Each aggregate has a key

 Data model:
 A set of <key,document> pairs
 Document: an aggregate

instance
 Structure of the aggregate

visible
 Limits on what we can place in

it
 Access to an aggregate

 Queries based on the fields in
the aggregate

36

21/05/2020

19

 Key-value model
 A key plus a big blob of mostly meaningless bits

 We can store whatever we like in the aggregate

 We can only access an aggregate by lookup based on its
key

 Document-based model
 A key plus a structured aggregate

 More flexibility in access
▪ We can submit queries to the database based on the fields in the

aggregate

▪ We can retrieve part of the aggregate rather than the whole thing

 Indexes based on the contents of the aggregate

37

 Relationship between different aggregates

 Put the ID of one aggregate within the data of the
other

 Join: write a program that uses the ID to link
data

 The database is ignorant of the relationships in
the data

38

21/05/2020

20

 An aggregate is a collection of data that we
interact with as a unit

 Aggregates form the boundaries for ACID
operations with the database

39

 Aggregates make it easier for the database to
manage data storage over clusters

 Aggregate-oriented databases work best when most
data interaction is done with the same aggregate

 Aggregate-ignorant databases are better when
interactions use data organized in many different
formations

 Key-value, document, and column-family
databases can all be seen as forms of aggregate-
oriented database

40

21/05/2020

21

 Graph databases are motivated by a different
frustration with relational databases

 Complex relationships require complex join

 Goal

 Capture data consisting of complex relationships

 Data naturally modeled as graphs

 Examples

▪ Social networks, Web data, product preferences

41

Query: “find the books in the Database category that are written by

someone whom a friend of mine likes.” 37

21/05/2020

22

 Basic characteristic

 Nodes are connected by edges (also called arcs)

 Beyond this

 A lot of variation in data models

▪ Neo4J stores Java objects as nodes and edges in a
schemaless fashion

▪ InfiniteGraph stores Java objects, which are subclasses
of built-in types, as nodes and edges.

▪ FlockDB is simply nodes and edges with no mechanism
for additional attributes

43

 Queries

 Navigation through the network of edges

 You do need a starting place

 Nodes can be indexed by an attribute such as ID

44

21/05/2020

23

 Relational databases
 Implement relationships using foreign keys

 Joins require to navigate around and can get quite
expensive

 Graph databases
 Make traversal along the relationships very cheap

 Performance is better for highly connected data

 Shift most of the work from query time to insert time

 Good when querying performance is more important
than insert speed

40

 Very different data models
 Aggregate-oriented databases
 Distributed across clusters

 Simple query languages

 No ACID guarantees
 Graph databases
 More likely to run on a single server

 Graph-based query languages

 Transactions maintain consistency over multiple
nodes and edges

46

21/05/2020

24

 Key-value databases

 Redis, Riak, Memcached, ..

 Column-family databases

 Cassandra, HBase, Hypertable, Amazon
DynamoDB, ..

 Document databases

 MongoDB, CouchDB, RavenDB, ..

 Graph databases

 Neo4J, Infinite Graph, OrientDB, ..

47

