
21/05/2020

1

 In 1998 Carlo Strozzi’s lightweight, open-
source relational database that did not
expose the standard SQL interface

 In 2009 Johan Oskarsson’s (Last.fm)
organizes an event to discuss recent
advances on non-relational databases. A new,
unique, short hashtag to promote the event
on Twitter was needed: #NoSQL

horizontal
scalability

no joins

Exam

Course

number

Student ID

Mark

Student

Student ID

Name

Surname

Course

Course

number

Name

Professor

schema-less
(no tables, implicit schema)

Student
ID

Name Surname

S123456 Mario Rossi

http://www.slideshare.net/vivekparihar1/mongodb-scala bility-and-hi gh-availa bility-with-replicaset

Relational databases
Non-Relational

databases

Table-based, each record is a structured
row

Specialized storage solutions, e.g,
document-based, key-value pairs, graph
databases, columnar storage

Predefined schema for each table,
changes allowed but usually blocking
(expensive in distributed and live
environments)

Schema-less, schema-free, schema
change is dynamic for each document,
suitable for semi-structured
or un-structured data

Vertically scalable, i.e., typically scaled
by increasing the power of the
hardware

Horizontally scalable, NoSQL
databases are scaled by increasing the
databases servers in the pool of
resources to reduce the load

Relational databases
Non-Relational

databases
Use SQL (Structured Query Language)
for defining and manipulating the data,
very powerful

Custom query languages, focused on
collection of documents, graphs, and
other specialized data structures

Suitable for complex queries, based on
data joins

No standard interfaces to perform
complex queries, no joins

Suitable for flat and structured data
storage

Suitable for complex (e.g., hierarchical)
data, similar to JSON and XML

Examples: MySQL, Oracle, Sqlite,
Postgres and Microsoft SQL Server

Examples: MongoDB, BigTable, Redis,
Cassandra, HBase and CouchDB

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset
http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset

21/05/2020

2

 Pros
 Work with structured data
 Support strict ACID transactional consistency
 Support joins
 Built-in data integrity
 Large eco-system
 Relationships via constraints
 Limitless indexing
 Strong SQL
 OLTP and OLAP
 Most off-the-shelf applications run on RDBMS

 Cons

 Do not scale out horizontally (concurrency and
data size) – only vertically, unless use sharding

 Data is normalized, meaning lots of joins,
affecting speed

 Difficulty in working with semi-structured data

 Schema-on-write

 Pros
 Work with semi-structured data (JSON, XML)
 Scale out (horizontal scaling – parallel query

performance, replication)
 High concurrency, high volume random reads and

writes
 Massive data stores
 Schema-free, schema-on-read
 Support records/documents with different fields
 High availability
 Speed, due to not having to join tables

 Cons
 Do not support strict ACID transactional consistency
 Data is denormalized, requiring mass updates (e.g.,

product name change)
 Do not have built-in data integrity (must do in code)
 No relationship enforcement
 Limited indexing
 Weak SQL
 Slow mass updates
 Use 10-50 more space (replication, denormalized,

documents)
 Difficulty tracking schema changes over time

 (Logical) Data model
 It is a set of constructs for representing the

information
 Storage model
 How the DBMS stores and manipulates the data

internally
 A data model is usually independent of the

storage model
 In practice we need at least some insight to

achieve good performances

11

 Data model for relational systems

 Relational model

▪ tables, columns and rows

 Data models for NoSQL systems

 Aggregate models

▪ key-value based model

▪ Document based model

▪ column-family based model

 Graph-based models

12

21/05/2020

3

 The dominant data model of the last decades
was the relational data model

 Relational data model

 It can be represented as a set of tables

 Each table has rows, with each row representing
an object of interest

▪ We describe objects through columns

 A column may refer to another row in the same or
different table (relationship)

13

 The relational model takes the information
that we want to store and divides it into
tables and tuples (rows)

 However, a tuple is a limited data structure

 It captures a set of values

 We can’t nest one tuple within another to get
nested records

 Nor we can put a list of values or tuple within
another

14

 Data are modeled as units that have a
complex structure

 A more complex structure than just a set of tuples

 Complex records with

▪ Simple fields

▪ Lists

▪ Maps

▪ Records nested inside other records

15

 Aggregate is a term coming from Domain-
Driven Design

 An aggregate is a collection of related objects that
we wish to treat as a unit for data manipulation,
management, and consistency

 We work with data in terms of aggregates
 We like to update aggregates with atomic

operations

16 http://pbdmng.datatoknowledge.it/readingMat erial/Evans03.pdf

 With aggregates we can easier work on a
cluster
 They are “independent” units

 Aggregates are also easier for application
programmer to work since solve the
impedance mismatch problem of relational
databases
 There is a strict “matching” between the objects

used inside programs and the “units/complex
records” stored in the databases

17

 We are building an e-
commerce website

 Stored information

 Users

 Products

 Orders

 Shipping addresses

 Billing addresses

 Payment data

18

21/05/2020

4

 Relational model

 Everything is normalized

 No data is repeated in
multiple tables

 We have referential
integrity

19 20

 We have two
aggregates in this
example model

 Customers and

 Orders

21

// (Single) Customer
{
 "id": 1,
 "name": "Fabio",
 "billingAddresses": [
 {
 "city": "Bari"
 }
]
}

//(Single) Order
{
 "id": 99,
 "customerId": 1,
 "orderItems": [
 {
 "productId": 27,
 "price": 34,
 "productName": "Scala in Action”
 }],
 "shippingAddress": [{"city": "Bari”}],
 "orderPayment": [
 { "ccinfo": "100-432423-545-134",
 "txnId": "afdfsdfsd",
 "billingAddress": [{"city": "Bari” }]
 }]
}

22

 In the example aggregate model there are
two “complex types” of records

 Customer

▪ Each customer record contains the customer profile,
including his/her billing addresses

 Order

▪ Each order record contains all the data about one order

 Data are denormalized and some information
is replicated

23

 The solution (data model) is domain-driven

 The aggregates are related to the expected usage
of the data

 In the reported example we suppose to
frequently read/write

 Customer profiles (including shipping addresses)

 Orders, with all the related information

 24

21/05/2020

5

25

 We have one
aggregate in this
model

 Customers

26

// (Single) Customer
{
 "id": 1,
 "name": "Fabio",
 "billingAddresses": [
 {
 "city": "Bari"
 }
]
 "orders": [
 {
 "id": 99,
 "orderItems": [
 { "productId": 27,
 "price": 34,
 "productName": "Scala in Action”
 }],
 "shippingAddress": [{"city": "Bari”}],
 "orderPayment": [
 { "ccinfo": "100-432423-545-134",
 "txnId": "afdfsdfsd",
 "billingAddress": [{"city": "Bari” }]
 }]
 }]
}

27

 No universal answer for how to draw aggregate
boundaries

 It depends entirely on how you tend to
manipulate data
 Accesses on a single order at a time and a single

customer at a time
▪ First solution

 Accesses on one customer at a time with all her orders
▪ Second solution

 Context-specific
 Some applications will prefer one or the other

28

 The focus is on the unit(s) of interaction with
the data storage

 Pros:

 It helps greatly when running on a cluster of nodes

▪ The data of each “complex record” will be manipulated
together, and thus should the stored on the same node

 Cons:

 An aggregate structure may help with some data
interactions but be an obstacle for others

29

 Key-value model
 Column-family based model
 Document-based model

30

21/05/2020

6

 Strongly aggregate-
oriented
 Lots of aggregates
 Each aggregate has a key

 Data model:
 A set of <key,value> pairs
 Value: an aggregate

instance
 The aggregate is opaque

to the database
 Just a big blob of mostly

meaningless bit
 Access to an aggregate

 Lookup based on its key

31

 Strongly aggregate-
oriented
 Lots of aggregates

 Each aggregate has a
key

 Data model: a two-
level map structure:
 A set of <row-key,

aggregate> pairs

 Each aggregate is a
group of pairs <column-
key,value>

32

 Columns can be
organized in families

 Columns of the same
family are usually
accessed together

 Access to an aggregate

 Accessing the row as a
whole

 Picking out particular
columns (of the same
family)

33

 Operations also allow picking out a particular
column
 get('1234', 'name')

 Each column
 Has to be part of a single column family

 Acts as unit for access
 You can add any column to any row, and rows

can have very different columns
 You can model a list of items by making each

item a separate column

30

 Two ways to look at data

 Row-oriented

▪ Each row is an aggregate

▪ Column families represent useful chunks of data within
that aggregate

 Column-oriented

▪ Each column family defines a record type

▪ Row as the join of records in all column families

30

 Strongly aggregate-oriented
 Lots of aggregates
 Each aggregate has a key

 Data model:
 A set of <key,document> pairs
 Document: an aggregate

instance
 Structure of the aggregate

visible
 Limits on what we can place in

it
 Access to an aggregate

 Queries based on the fields in
the aggregate

36

21/05/2020

7

 Key-value model
 A key plus a big blob of mostly meaningless bits

 We can store whatever we like in the aggregate

 We can only access an aggregate by lookup based on its
key

 Document-based model

 A key plus a structured aggregate

 More flexibility in access
▪ We can submit queries to the database based on the fields in the

aggregate

▪ We can retrieve part of the aggregate rather than the whole thing

 Indexes based on the contents of the aggregate

37

 Relationship between different aggregates

 Put the ID of one aggregate within the data of the
other

 Join: write a program that uses the ID to link
data

 The database is ignorant of the relationships in
the data

38

 An aggregate is a collection of data that we
interact with as a unit

 Aggregates form the boundaries for ACID
operations with the database

39

 Aggregates make it easier for the database to
manage data storage over clusters

 Aggregate-oriented databases work best when most
data interaction is done with the same aggregate

 Aggregate-ignorant databases are better when
interactions use data organized in many different
formations

 Key-value, document, and column-family
databases can all be seen as forms of aggregate-
oriented database

40

 Graph databases are motivated by a different
frustration with relational databases

 Complex relationships require complex join

 Goal

 Capture data consisting of complex relationships

 Data naturally modeled as graphs

 Examples

▪ Social networks, Web data, product preferences

41

Query: “find the books in the Database category that are written by

someone whom a friend of mine likes.” 37

21/05/2020

8

 Basic characteristic

 Nodes are connected by edges (also called arcs)

 Beyond this

 A lot of variation in data models

▪ Neo4J stores Java objects as nodes and edges in a
schemaless fashion

▪ InfiniteGraph stores Java objects, which are subclasses
of built-in types, as nodes and edges.

▪ FlockDB is simply nodes and edges with no mechanism
for additional attributes

43

 Queries

 Navigation through the network of edges

 You do need a starting place

 Nodes can be indexed by an attribute such as ID

44

 Relational databases
 Implement relationships using foreign keys

 Joins require to navigate around and can get quite
expensive

 Graph databases
 Make traversal along the relationships very cheap

 Performance is better for highly connected data

 Shift most of the work from query time to insert time

 Good when querying performance is more important
than insert speed

40

 Very different data models
 Aggregate-oriented databases
 Distributed across clusters

 Simple query languages

 No ACID guarantees
 Graph databases
 More likely to run on a single server

 Graph-based query languages

 Transactions maintain consistency over multiple
nodes and edges

46

 Key-value databases

 Redis, Riak, Memcached, ..

 Column-family databases

 Cassandra, HBase, Hypertable, Amazon
DynamoDB, ..

 Document databases

 MongoDB, CouchDB, RavenDB, ..

 Graph databases

 Neo4J, Infinite Graph, OrientDB, ..

47

