
Data Science Lab: process and methods

Lab 8 solution

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

[2]: plt.rcParams["figure.figsize"] = (10, 6)

0.1 Exercise 1

In this exercise, we will try different regression models on points drawn from three different ana-
lytical functions. We will see that the overall quality of the models heavily depends on the shape
of the functions.

That said, let’s define our three analytical functions.

[3]: def f1(x):
return x * np.sin(x) + 2*x

def f2(x):
return 10 * np.sin(x) + x**2

def f3(x):
return np.sign(x) * (300 + x**2) + 20 * np.sin(x)

0.1.1 Exercises 1.1 and 1.2

As usual, we can define convenient functions to generate and plot our data.

[4]: def generate_X_y(f):
tr = 20
n_samples = 100
X = np.linspace(-tr, tr, n_samples)
y = f(X)
return X, y

def plot_f(X, y, title):
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LW = 4
fig, ax = plt.subplots()
ax.plot(X, y, color='cornflowerblue', linewidth=.5*LW, label="ground truth")
fig.suptitle(title)
#ax.scatter(X_train, y_train, color='navy', s=30, marker='o',␣

↪→label="training points")

[5]: for f in [f1, f2, f3]:
X, y = generate_X_y(f)
plot_f(X, y, f)
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f1 has two main components: a sine wave with an increasing magnitude (due to the factor x), plus
an additive factor that gives a non zero slope to the curve.

f2 has a sine wave with fixed amplitude, modulated by a parabolic function.

f3 presents a sine wave modulated by a parabolic function. However, it is different from f2. The
quadratic expression changes concativity (i.e. there is an inflection point) at zero, due to the sign
component. Also, the factor sign(x) 300 produces a discontinuity point of type one.

The shape of the functions tells us that f2 and f3 have an infinite asymptotic value, for both positive
and negative values. Hence, they can be approximated with polynomial regressors. However, f3 has
a discontinuity point at 0, which can harden the approximation for classifiers. Even if the ordinary
least squares regressor would fit the linear trend present in f1, we can see that all the three functions
cannot be approximated with a linear regressor, with sufficient results, for large values of x.

Back to programming, you can notice how the functions behave as simple objects in Python. It is
not unsual to assign them to variables or, like in this case, create an array of them. Here, the f
variable points, at each loop cycle, to a different function in memory, and gets invoked as a callable
object. Additionally, you can note the printed version of f contains the name of the assigned
function and the memory address where its code is stored.

Exercises 1.3, 1.4, and 1.5 Let’s now fit our regression models. To do so, we define a function
to create the training and test points given a function and a scikit-learn Pipeline to apply to them.
For the seek of readability, we inspect one analytic function at a time.

[6]: from sklearn.model_selection import train_test_split

def generate_train_test(f, X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y,

train_size=30,
random_state=42,
shuffle=True)

y_test = y_test[X_test.argsort()]
X_test.sort()
return X_train, X_test, y_train, y_test

Note that here the cardinality of training and test sets are reversed with respect to common cases.
Typically, the 70% of the dataset is kept as training set and the remaining 30% is used to test the
model.

In the following cells, we test different regression algorithm and evaluate the regression error through
two metrics: the MSE and the R2 score. Thus, we use a convenient Python function that, given
an analytical function, a dataset, and a model, produces the value of the two metrics. To better
understand the quality of each regressor, the function provides also a graphical representation of
the predicted values against the real values drawn from the original curve.

[7]: from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

def evaluate_model(f, X, y, model, model_name):
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X_train, X_test, y_train, y_test = generate_train_test(f, X, y)

# plot the real function and the training points
LW = 2
fig, ax = plt.subplots()
ax.plot(X, y, color='cornflowerblue', linewidth=.5*LW, label="ground truth")
ax.scatter(X_train, y_train, color='navy', s=30, marker='o',␣

↪→label="training points")

# predict the test points and plot them onto the chart
model.fit(X_train.reshape(-1, 1), y_train)
y_hat = model.predict(X_test.reshape(-1, 1))
ax.plot(X_test, y_hat, linewidth=LW, label=name, color='r')

fig.suptitle(f"{f} approximated by {model_name}")
fig.legend()

return mean_squared_error(y_test, y_hat), r2_score(y_test, y_hat)

[8]: from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.preprocessing import FunctionTransformer, PolynomialFeatures
from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline

The performance of each regressor are collected and displayed with the library PrettyTable.

[9]: from prettytable import PrettyTable

degree = 5
models = [

LinearRegression(),
Ridge(random_state=42),
MLPRegressor(hidden_layer_sizes=(10,), random_state=42, max_iter=10000),
MLPRegressor(hidden_layer_sizes=(10,10), activation='tanh', solver='lbfgs',

alpha=0.000, batch_size='auto', learning_rate='constant',
learning_rate_init=0.01, power_t=0.5, max_iter=10000,␣

↪→shuffle=True,
random_state=42, tol=0.0001, verbose=True, warm_start=False,
momentum=0.0, nesterovs_momentum=False, early_stopping=False,
validation_fraction=0.0, beta_1=0.9, beta_2=0.999,␣

↪→epsilon=1e-08),
SVR(gamma='scale'),
RandomForestRegressor(n_estimators=300),
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make_pipeline(
make_column_transformer(

(FunctionTransformer(np.sin), [0]),
(PolynomialFeatures(degree), [0])

),
LinearRegression()

),
make_pipeline(

make_column_transformer(
(FunctionTransformer(np.sin), [0]),
(PolynomialFeatures(degree), [0])

),
Ridge(alpha=1)

)
]

names = [
'linreg',
'ridge',
'mlp_standard',
'mlp_tuned',
'svr',
'rf',
f'sin+poly{degree}+linreg',
f'sin+poly{degree}+ridge'

]

Before the actual simulation, let’s spend a few comments on the code above. We generated a
list with a few models to be tested along with a respective textual representation that is used in
the title of the each figure. The single-stage models are: - a simple Linear Regression model; -
a MultiLayer Perceptron (a.k.a. feed forward neural network) with a single hidden layer with a
reasonable number of hidden nodes; - a deeper MultiLayer Perceptron with tuned parameters. We
do not spend too much time on them since it goes beyond the scope of the exercise. However, the
provided paramenters should let you grasp how wide are the tuning possibilities of this estimator; -
a Support Vector Regressor (gamma = ‘scale’ is recommended for the scikit-learn implementation);
- a Random Forest Regressor (the higher the number of estimator, the better).

We also adopted two composite pipelines. Each of them has two steps: 1. in the first step we build a
ColumnTransformer using an utility method. The Transform objects in scikit-learn’s preprocessing
module are typically used to perfom some sort of transformation of the input columns (e.g. scaling
and normalization, application of a function). The ColumnTransform lets you specify a series of
single Transformers to apply to columns of your choice. In our case, we apply two types of column
transformation to the first (and only) column (see the parameter [0] of each tuple). One uses a
FunctionTransformer to generate one additional feature in the form sin(x). The other creates new
polynomial features using the pattern provided by the class PolynomialFeatures. 2. In the second
test we apply the regressor model as usual. Specifically, we test LinearRegression a Ridge again to
measure the impact of the previous preprocessing on the performance.
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Results for f = f1
[10]: t = PrettyTable()

t.field_names = ['model', 'MSE', 'R2']
X, y = generate_X_y(f1)
for model, name in zip(models, names):

mse, r2 = evaluate_model(f1, X, y, model, name)
t.add_row([name, mse, r2])

print(t)

+------------------+--------------------+---------------------+
| model | MSE | R2 |
+------------------+--------------------+---------------------+
| linreg | 65.72227592689515 | 0.8950661957810067 |
| ridge | 65.74765554283465 | 0.8950256740612001 |
| mlp_standard | 75.46463406818695 | 0.879511306857702 |
| mlp_tuned | 104.46617412806707 | 0.8332067338073432 |
| svr | 399.9552743551347 | 0.36142155968215894 |
| rf | 57.024236887693924 | 0.9089536991085534 |
| sin+poly5+linreg | 95.50251981840506 | 0.8475183250167385 |
| sin+poly5+ridge | 93.41072390557375 | 0.8508581378836467 |
+------------------+--------------------+---------------------+
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We see that LinearRegression and Ridge have comparable results. SVR fails at modeling the cor-
rect shape of the curve, the standard MLP converged to an approximation of the linear behavior,
while the tuned MLP shows a more complex pattern, although an abnormal spike near zero worsen
probably affects negatively the performance. The Random Forest regressor achieved the best per-
formance in both the MSE and R2 scores. Finally, it is worth noting that the addition of sin(x)
and the polynomial features up to the fifth degree slightly worsened the performance of Linear-
Regression and Ridge. Having the real function shape, we can graphically find a motivation for
that. For both the regressors, the predictions (the red curve) are able follow a sinusoidal pattern
(which we might have expected by the introduction of sin(x)). Nonetheless, for negative values of
x, this curve is in couterphase with the real one, increasing the overall error.

0.1.2 Exercise 1.6

In many real tasks, we typically suppose that the measurements of the predictive variables carry
some sort of noise. To reflect this aspect to our synthetic data, we can inject it manually.

[11]: def inject_noise(x):
"""Add a random noise drawn from a normal distribution."""
return x + np.random.normal(0, 50, size=x.size)

[12]: X, y = generate_X_y(f1)
y = inject_noise(y)

t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']
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for model, name in zip(models, names):
mse, r2 = evaluate_model(f1, X, y, model, name)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:571:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (10000) reached and
the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

+------------------+--------------------+----------------------+
| model | MSE | R2 |
+------------------+--------------------+----------------------+
| linreg | 2957.236994778774 | 0.11280320127342303 |
| ridge | 2957.0994988641382 | 0.11284445124274178 |
| mlp_standard | 3296.3441666075573 | 0.011068102665194646 |
| mlp_tuned | 3688.7875228403523 | -0.10666831479001027 |
| svr | 3324.973510100103 | 0.002479050810008321 |
| rf | 4556.727445167173 | -0.36705783444464113 |
| sin+poly5+linreg | 3288.756662982372 | 0.013344419693040566 |
| sin+poly5+ridge | 3289.5728746771806 | 0.01309954909119293 |
+------------------+--------------------+----------------------+
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This kind of noise (normal, standard deviation=50) makes the problem extremely more complex.
The initial shape of the function is lost and the performace are worse for any classifier.

Note: the reported warning concerns MLP. Even with 10000 iterations is is not able to converge to
stable values for the weights in the network.

Results for f = f2
[13]: t = PrettyTable()

t.field_names = ['model', 'MSE', 'R2']
X, y = generate_X_y(f2)
for model, name in zip(models, names):

mse, r2 = evaluate_model(f2, X, y, model, name)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:571:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (10000) reached and
the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)
/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:470:
ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
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Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html

self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)

+------------------+-----------------------+-----------------------+
| model | MSE | R2 |
+------------------+-----------------------+-----------------------+
| linreg | 15300.007189428956 | -0.037420556511206016 |
| ridge | 15299.785419953309 | -0.037405519380177665 |
| mlp_standard | 383.373251167696 | 0.9740052872751136 |
| mlp_tuned | 194.42309666497553 | 0.9868170965775644 |
| svr | 14341.447317768201 | 0.027574819189968847 |
| rf | 229.9094464786911 | 0.9844109363505463 |
| sin+poly5+linreg | 5.419623147322589e-23 | 1.0 |
| sin+poly5+ridge | 0.23623830289128636 | 0.9999839818067652 |
+------------------+-----------------------+-----------------------+
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The crucial result here concerns the LinearRegression and Ridge models. Given the highly non-
linear behavior, without a proper preprocessing, they performed the worst. However, the higher
capability achieved including the sinusoidal component, along with polynomial features, drasti-
cally improved the performance. The best performing model here is the Ridge regularitazion in
sin+poly5+ridge which copied almost identically the true values. This is a clear example of how
an accurate preprocessing becomes crucial, especially for linear models.

As a further exercise, we suggest to test the performance of the other regressors with the same
preprocessing applied to improve the linear models. Let’s test now what happens adding the
Gaussian noise.

[14]: X, y = generate_X_y(f2)
y = inject_noise(y)

t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']
for model, name in zip(models, names):

mse, r2 = evaluate_model(f2, X, y, model, name)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:571:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (10000) reached and
the optimization hasn't converged yet.
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% self.max_iter, ConvergenceWarning)

+------------------+--------------------+-----------------------+
| model | MSE | R2 |
+------------------+--------------------+-----------------------+
| linreg | 13844.561167759284 | -0.015583193249441907 |
| ridge | 13844.460508413049 | -0.015575809271066499 |
| mlp_standard | 2991.1860609583377 | 0.7805782173532807 |
| mlp_tuned | 5787.52310195952 | 0.5754498014295486 |
| svr | 12891.137648265858 | 0.05435625016904311 |
| rf | 4113.044606937682 | 0.6982830351012688 |
| sin+poly5+linreg | 3314.773489446183 | 0.7568411013886113 |
| sin+poly5+ridge | 3298.91855356633 | 0.7580041578563832 |
+------------------+--------------------+-----------------------+
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The overall shape of the function is retained by the standard MLP, and sin+poly5+[linreg|ridge].
This lead to the lowest overall error.

Results for f = f3
[15]: t = PrettyTable()

t.field_names = ['model', 'MSE', 'R2']
X, y = generate_X_y(f3)
for model, name in zip(models, names):

mse, r2 = evaluate_model(f3, X, y, model, name)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:571:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (10000) reached and
the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

+------------------+--------------------+---------------------+
| model | MSE | R2 |
+------------------+--------------------+---------------------+
| linreg | 15760.86079984127 | 0.9222471586304892 |
| ridge | 15763.614946346856 | 0.9222335716367915 |
| mlp_standard | 11102.721825876006 | 0.9452270926150279 |
| mlp_tuned | 13752.433310925047 | 0.9321553067913714 |
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| svr | 326343.75456681015 | -0.6099472295967054 |
| rf | 2451.5507620247454 | 0.9879057977905031 |
| sin+poly5+linreg | 9562.724944229945 | 0.9528243383980357 |
| sin+poly5+ridge | 9517.04484093962 | 0.9530496914336334 |
+------------------+--------------------+---------------------+
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The top performing algorithm is Random Forest again. We can see that it is the only model able to
handle the discontinuity at 0: values approaching 0 from the left (small negative values) are similar
to the real values of the left-most part of the function, the same applies for small positive values.
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[16]: X, y = generate_X_y(f3)
y = inject_noise(y)

t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']
for model, name in zip(models, names):

mse, r2 = evaluate_model(f3, X, y, model, name)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:571:
ConvergenceWarning: Stochastic Optimizer: Maximum iterations (10000) reached and
the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

+------------------+--------------------+---------------------+
| model | MSE | R2 |
+------------------+--------------------+---------------------+
| linreg | 17515.338908756312 | 0.9121094984003594 |
| ridge | 17517.105255078095 | 0.9121006350226635 |
| mlp_standard | 12352.939018232815 | 0.9380139880707941 |
| mlp_tuned | 22997.03282444203 | 0.8846028180914527 |
| svr | 305167.54329760035 | -0.5313051372901239 |
| rf | 6353.001176701917 | 0.9681211729334968 |
| sin+poly5+linreg | 11793.78421643006 | 0.9408197799688728 |
| sin+poly5+ridge | 11650.803186975163 | 0.941537246782589 |
+------------------+--------------------+---------------------+
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The most robust to noise is Random Forest in this case.

### Exercise 2

In this exercise, you will carry out a multivariate regression analysis. Technically speaking, the

35



preprocessing step added in the pipeline in Exercise 1 also lead to a multivariate analyis, considering
also the newly generated features. Now, we generate a synthetic, multi-dimensional dataset using
scikit-learn. The nature and the importance of each of the features can be fine-tuned using the
make_regression function.

[17]: from sklearn.datasets import make_regression

### Exercise 2.1

We can use the make_regression function to generate a synthetic dataset with 2000 points. You
should spend enough time inspecting the function parameters. For now, we recall that, by default:
- 100 features are generated, 10 of which are informative - the target variable has a single dimension
- no noise is applied. You can set a normal noise with the parameter noise

[18]: X, y = make_regression(n_samples=2000, random_state=42)
X.shape, y.shape

[18]: ((2000, 100), (2000,))

### Exercise 2.2

We can now run again the regression simulation developed in Exercise 1.

Note: here we get back to the normal conditions where we adopt 70% of the dataset as training
set and the remaining 30% as test set. This can be achieved by simply changing the value to the
train_size parameter.

[19]: t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']

for model, name in zip(models, names):
X_train, X_test, y_train, y_test = train_test_split(X, y,

train_size=.7,
random_state=42,
shuffle=True)

model.fit(X_train, y_train)
y_hat = model.predict(X_test)
mse = mean_squared_error(y_test, y_hat)
r2 = r2_score(y_test, y_hat)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:470:
ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
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https://scikit-learn.org/stable/modules/preprocessing.html
self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)

+------------------+-----------------------+-----------------------+
| model | MSE | R2 |
+------------------+-----------------------+-----------------------+
| linreg | 1.491861127842467e-25 | 1.0 |
| ridge | 0.026589221217723277 | 0.9999993361938854 |
| mlp_standard | 59.67097245363076 | 0.998510300243291 |
| mlp_tuned | 9081.738642192302 | 0.773272274785179 |
| svr | 38892.567627033684 | 0.029037970232504207 |
| rf | 10655.011193604842 | 0.7339951582793712 |
| sin+poly5+linreg | 40959.66218569419 | -0.022567527960504208 |
| sin+poly5+ridge | 40620.5489939929 | -0.01410148796816535 |
+------------------+-----------------------+-----------------------+

The tested model behave differently. Since the target label is generated by make_regression from
a random linear model, we find that linear models and the model which can closely approximate
a linear model (e.g. the standard MLP with one hidden layer) perform better. The R2 for the
unregularized linear model is 1, meaning that it is able to capture all the information in the 10
informative features (the MSE is approximately 0).

Even though these results suggest that the so-defined problem is simple, we can notice that more
complex models fail at grasping this simplicity, leading to high errors. Over-parametrized models
strongly suffer the redundancy of information carried by the non-informative 90 features.

### Exercise 2.3

Let’s now inspect how the performance of our models change when: - some noise is introduced; -
the number of informative features increases.

[20]: X, y = make_regression(n_samples=2000, random_state=42, noise=10)
t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']

for model, name in zip(models, names):
X_train, X_test, y_train, y_test = train_test_split(X, y,

train_size=.7,
random_state=42,
shuffle=True)

model.fit(X_train, y_train)
y_hat = model.predict(X_test)
mse = mean_squared_error(y_test, y_hat)
r2 = r2_score(y_test, y_hat)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:470:
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ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html

self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)

+------------------+--------------------+-----------------------+
| model | MSE | R2 |
+------------------+--------------------+-----------------------+
| linreg | 111.1154487123277 | 0.9972285317141203 |
| ridge | 111.32455388067977 | 0.9972233161626446 |
| mlp_standard | 397.79932377985136 | 0.9900779934493669 |
| mlp_tuned | 8652.930271788262 | 0.7841765289516479 |
| svr | 39028.249235400996 | 0.026548006935037116 |
| rf | 10049.773799052658 | 0.7493361212404551 |
| sin+poly5+linreg | 40425.61438644836 | -0.008305411242192973 |
| sin+poly5+ridge | 40291.90586225675 | -0.004970421025771943 |
+------------------+--------------------+-----------------------+

As we might have expected, the introduction of a random gaussian noise with standard deviation
of 10 decreases the performance of every model.

Let’s introduce more informative features. However, keep in mind that those will be used to
generate a target value with a linear combination: we can expect that models close to linear will
be again the top performer.

[21]: X, y = make_regression(n_samples=2000, random_state=42, noise=10,
n_informative=70)

t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']

for model, name in zip(models, names):
X_train, X_test, y_train, y_test = train_test_split(X, y,

train_size=.7,
random_state=42,
shuffle=True)

model.fit(X_train, y_train)
y_hat = model.predict(X_test)
mse = mean_squared_error(y_test, y_hat)
r2 = r2_score(y_test, y_hat)
t.add_row([name, mse, r2])

print(t)

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/sklearn/neural_network/_multilayer_perceptron.py:470:
ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
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Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html

self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)

+------------------+--------------------+----------------------+
| model | MSE | R2 |
+------------------+--------------------+----------------------+
| linreg | 99.92193369275083 | 0.9996581789295267 |
| ridge | 100.17526177647642 | 0.9996573123242324 |
| mlp_standard | 151.2964519724636 | 0.9994824328026811 |
| mlp_tuned | 70093.10550001937 | 0.7602198089111757 |
| svr | 288970.03486527514 | 0.011467822909904779 |
| rf | 193262.1739056526 | 0.3388730509404215 |
| sin+poly5+linreg | 287344.53105641843 | 0.01702847842834465 |
| sin+poly5+ridge | 287575.8006801805 | 0.016237332506315427 |
+------------------+--------------------+----------------------+

Comparing the latter tables with the previous one (with 10 informative features) we can notice
two different changes. While Linear Regression, Ridge and the standard MLP have improved
their performance (in terms of both MSE and R2), the other, more complex classifiers performed
significanlty worse. We can conclude that increasing the number of informative features not only
brings more information (and lowers the redundancy), but also makes the problem harder, and the
latter factor has the strongest impact on the tested models.

0.2 Exercise 2

In the second part of the laboratory, we will cover the topic of time series forecasting, working on
the dataset of temperatures collected during the Second World War. Specifically, we will focus on
the forecasting of the temperature value one - or more - day ahead of the current time, based on
the history of available temperatures.

### Exercise 2.1

To quickly load and inspect the dataset, we can use pandas.

[22]: import pandas as pd

[23]: df = pd.read_csv('weatherww2/SummaryofWeather.csv')

/Users/giuseppe/miniconda3/lib/python3.6/site-
packages/IPython/core/interactiveshell.py:3063: DtypeWarning: Columns
(7,8,18,25) have mixed types.Specify dtype option on import or set
low_memory=False.

interactivity=interactivity, compiler=compiler, result=result)

0.2.1 Exercise 2.2

We can inspect the content of the dataset with the method info.

39



[24]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119040 entries, 0 to 119039
Data columns (total 31 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 STA 119040 non-null int64
1 Date 119040 non-null object
2 Precip 119040 non-null object
3 WindGustSpd 532 non-null float64
4 MaxTemp 119040 non-null float64
5 MinTemp 119040 non-null float64
6 MeanTemp 119040 non-null float64
7 Snowfall 117877 non-null object
8 PoorWeather 34237 non-null object
9 YR 119040 non-null int64
10 MO 119040 non-null int64
11 DA 119040 non-null int64
12 PRCP 117108 non-null object
13 DR 533 non-null float64
14 SPD 532 non-null float64
15 MAX 118566 non-null float64
16 MIN 118572 non-null float64
17 MEA 118542 non-null float64
18 SNF 117877 non-null object
19 SND 5563 non-null float64
20 FT 0 non-null float64
21 FB 0 non-null float64
22 FTI 0 non-null float64
23 ITH 0 non-null float64
24 PGT 525 non-null float64
25 TSHDSBRSGF 34237 non-null object
26 SD3 0 non-null float64
27 RHX 0 non-null float64
28 RHN 0 non-null float64
29 RVG 0 non-null float64
30 WTE 0 non-null float64
dtypes: float64(20), int64(4), object(7)
memory usage: 28.2+ MB

Please refer to the laboratory text to discover more on the attributes.

The dataset is composed of 119040 rows. From the output of info, it is clear that most of the
31 attributes have missing values. 9 of them are completely null (e.g. FT, FB, etc.). This is
commonplace in real-life tasks, where different sampling procedures are used during the time, the
measurements can fail, etc.

The information relative to each sensor are reported in a second file. Let’s read it.
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[25]: sensors = pd.read_csv("weatherww2/WeatherStationLocations.csv")
sensors.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 161 entries, 0 to 160
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 WBAN 161 non-null int64
1 NAME 161 non-null object
2 STATE/COUNTRY ID 161 non-null object
3 LAT 161 non-null object
4 LON 161 non-null object
5 ELEV 161 non-null int64
6 Latitude 161 non-null float64
7 Longitude 161 non-null float64
dtypes: float64(2), int64(2), object(4)
memory usage: 10.2+ KB

The latter file contains useful information to characterize our sensors. Specifically, the Latitude and
Longitude attribute can be used to group sensors near on the map. As we can see, many attributes
in both the files are numerical, floating point. The normalization of these attributes is a matter
specific to the considered task. Let’s skip it for now, we will discuss about it later.

To discover the sensors with most of the temperature readings, we can use pandas. Note: this is
not mandatory, every step in the following cells can be implemented with plain Python.

[26]: df.groupby("STA").size().sort_values(0, ascending=False).head(10)

[26]: STA
22508 2192
10701 2185
22502 2154
22504 2118
10803 1750
11610 1631
16405 1622
11601 1604
10502 1527
11604 1514
dtype: int64

Grouping the rows by sensor id (STA), counting the size of each group, and, finally, sorting them
gives us the list of STAs that show up the most.

#### Exercise 2.3

Transorming features with dates into Datetime objects is usually a good idea. Meanwhile we can
set a new index for our dataset.
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[27]: df["Date"] = pd.to_datetime(df["Date"])
df = df.set_index("Date")

We can now keep only the readings of Sensor 22508 and plot the series of MeanTemps.

[28]: mtemps = df[df["STA"] == 22508]["MeanTemp"]
mtemps.head(5)

[28]: Date
1940-01-01 20.000000
1940-01-02 19.444444
1940-01-03 20.000000
1940-01-04 21.111111
1940-01-05 18.333333
Name: MeanTemp, dtype: float64

Exercise 2.4
[29]: fig, ax = plt.subplots()

_ = ax.plot(mtemps.index.values, mtemps.values)
# or equivalently
# mtemps.plot(ax=ax)

This plot tells us that: - the series has a clear seasonality. We may have expected that: the
temperatures raise during the summer and fall down in winter; - while the highest temperature
of the year remain constant (except for the year 1944) in the period 1940-1946, the lowest one
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increases in the late years; - given the observed range, we can suppose that the temperature values
are expressed in Celsius degrees.

Exercise 2.5 There are many strategies to address the forecasting task of a time series. The
transformation of the series itself into a structured representation (i.e. a set of records sharing some
predictive features) enables the use of machine learning models. We also know these models are
trained to learn the function mapping predicting features to a desired value. Thus, to complete the
design of a forecasting framework, we need to carefully select a target variable.

ML practitioners often use the following strategy: - predictive features: the features to be used
in the structured representation are computed from the values already observed from the series.
They can be the values themselves (which makes the approach more similar to classical, statistical
autoregressive models like ARIMA), or a more complex combination of them. In this exercise, we
will adopt the simpler way and use the values in a window of fixed-length W. Specifically, this
window will be rolling along the series, to obtain one record for each time step (for a graphical
representation, please refer to the laboratory text);
- target variable: to model the task of forecasting, the target variable should encode a future event.
Thus, the algorithm will be able to model the relationship between some already-seen feature values
and an upcoming behavior of the series. In this exercise, we will use as target variable the value of
the series right after the considered window.

[30]: W = 3
X = list()
y = list()

[31]: for i in range(mtemps.size - W): # range: [0, mtemps.size - W - 1]
X.append(mtemps.iloc[i:i + W].values.T) # transpose to create a row array
y.append(mtemps.iloc[i + W])

# transform the structured representation into numpy arrays
X = np.array(X)
y = np.array(y)
X.shape, y.shape

[31]: ((2189, 3), (2189,))

We can check whether the rolling window has worked properly inspecting a few samples.

[32]: mtemps[:5]

[32]: Date
1940-01-01 20.000000
1940-01-02 19.444444
1940-01-03 20.000000
1940-01-04 21.111111
1940-01-05 18.333333
Name: MeanTemp, dtype: float64
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[33]: X[:3,:]

[33]: array([[20. , 19.44444444, 20. ],
[19.44444444, 20. , 21.11111111],
[20. , 21.11111111, 18.33333333]])

[34]: y[:3]

[34]: array([21.11111111, 18.33333333, 20. ])

Given a record associated with the day t, y[t] is the value taken by the series at the day t+W+1
(i.e. mtemps[t+W]), which seems correct.

Exercise 2.6 Let’s use now the values from 1940 to 1944 as training data and test the model on
the remaining year. We can leverage pandas to filter data based on time strings. To do so, we can
convert our arrays into pandas DataFrame and Series using the DatetimeIndex from mtemps.

[35]: X_df = pd.DataFrame(X, index=mtemps.index[:mtemps.size - W],
columns=["t0", "t1", "t2"])

X_df.head()

[35]: t0 t1 t2
Date
1940-01-01 20.000000 19.444444 20.000000
1940-01-02 19.444444 20.000000 21.111111
1940-01-03 20.000000 21.111111 18.333333
1940-01-04 21.111111 18.333333 20.000000
1940-01-05 18.333333 20.000000 20.555556

[36]: y_s = pd.Series(y, index=mtemps.index[:mtemps.size - W])
y_s.head()

[36]: Date
1940-01-01 21.111111
1940-01-02 18.333333
1940-01-03 20.000000
1940-01-04 20.555556
1940-01-05 18.888889
dtype: float64

[37]: X_train, y_train = X_df.loc["1940":"1944"], y_s.loc["1940":"1944"]
X_train.index

[37]: DatetimeIndex(['1940-01-01', '1940-01-02', '1940-01-03', '1940-01-04',
'1940-01-05', '1940-01-06', '1940-01-07', '1940-01-08',
'1940-01-09', '1940-01-10',
…
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'1944-12-22', '1944-12-23', '1944-12-24', '1944-12-25',
'1944-12-26', '1944-12-27', '1944-12-28', '1944-12-29',
'1944-12-30', '1944-12-31'],
dtype='datetime64[ns]', name='Date', length=1827, freq=None)

Keep in mind that we used a forward-looking notation for our window, i.e. for the record t we have
the values of the series between t and t+W. Under this conditions, at the end of the year, we are
going to have W data points that include information from the next year. This is not a problem
up if we slightly shift the beginning of our test set. Specifically, we might want to start our test
set for the Wth day or the year.

Including some information from what it is consider the test set into the training procedure is a
wrong habit known as data leakage. You should always stop and take a moment to consider if
any data leakage is happening within your pipeline.

[38]: from datetime import date
initial_day = date(1944, 12, 31) + pd.Timedelta(f"{W} days")
initial_day

[38]: datetime.date(1945, 1, 3)

[39]: X_test, y_test = X_df.loc[initial_day:], y_s.loc[initial_day:]
X_test.shape

[39]: (360, 3)

Note how neat is the indexing on pandas object with Datetime indices. You are allowed to specify
a numpy-like interval with dates as datetime.date or strings. Of course, more complex and useful
indexings are possibile, but they go beyond the scope of the laboratory.

#### Exercise 2.7

Since we still have in memory the definitions of models and names (this is one of the beauties and
curses of Jupyter notebooks) we can recycle and them for our current task.

[40]: t = PrettyTable()
t.field_names = ['model', 'MSE', 'R2']

for model, name in zip(models, names):
model.fit(X_train, y_train)
y_hat = model.predict(X_test)
mse = mean_squared_error(y_test, y_hat)
r2 = r2_score(y_test, y_hat)
t.add_row([name, mse, r2])

print(t)

+------------------+--------------------+--------------------+
| model | MSE | R2 |
+------------------+--------------------+--------------------+
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| linreg | 0.7708838668711151 | 0.6684666582498298 |
| ridge | 0.7708190312576426 | 0.6684945420446823 |
| mlp_standard | 0.7756832982117083 | 0.6664025710646799 |
| mlp_tuned | 2.407530887487392 | -0.03540467610914 |
| svr | 0.7606632382515228 | 0.6728622349464781 |
| rf | 0.8362497037896549 | 0.6403548306695499 |
| sin+poly5+linreg | 1.1396245117527566 | 0.5098826957485592 |
| sin+poly5+ridge | 1.1393130367062887 | 0.5100166515458784 |
+------------------+--------------------+--------------------+

Even in this case, the models with behavior more close to linear perform the better. This could
imply that some sort of linear relationship exists between the past W values of the series and the
target. Additional comments can be made: - the choice of custom tuning of MLP is wrong in this
case, since it lead to the worst performance. Keep in mind that we do not have carried out any
validation. The validation step is used for hyperparameter tuning, iterating the training process to
identify the best configurations. However, validating a machine learning approach based on time
series requires further attention. Cross-validation is not allowed, for example, since values have
an intrinsc order and cannot be shuffled. Scikit-learn offers a validation strategy for time series
thourgh the TimeSeriesSplit class. You can find complete examples on how to use it on the official
documentation. The hyperparameter tuning can be mixed with TimeSeriesSplit the already seen
GridSearchCV. - our approach is intentionally non incremental, i.e. we train the model once and we
use it to forecast an entire future year. Although this is correct for research purposes, in practical
applications we might find useful to fed fresh information to the model (e.g. by running the training
again) as it comes, while the time passes by and new records are collected. The profitability of this
approach, however, depends on the application (e.g. there are cases in which you are not able to
train the model iteratively in time) and an improvement in performance should not be taken for
granted.

Exercise 2.8 Thanks to matplotlib, we can plot our predictions onto the real series for the test
year. For simplicity, we can inspect the best performing model, the Ridge regularizer.

[41]: model = Ridge(random_state=42)
model.fit(X_train, y_train)
y_hat = model.predict(X_test)
y_hat = pd.Series(y_hat, index=y_test.index)
error = y_test - y_hat

fig, ax = plt.subplots(nrows=2, ncols=1, sharex=True,␣
↪→gridspec_kw={'height_ratios': [3, 1]})

ax[0].plot(y_test, label="Ground truth")
ax[0].plot(y_hat, label="Predicted")
ax[0].set_ylabel("Temperature (C)")
ax[0].legend()
ax[0].grid()
ax[1].plot(error.abs())
ax[1].set_ylabel("|error|")
ax[1].axhline(error.abs().mean(), color="purple", label = "Average |error|")
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ax[1].legend()
ax[1].grid()

f"The average |error| is: {error.abs().mean():.2f} +- {error.abs().std():.2f}␣
↪→degrees Celsius"

[41]: 'The average |error| is: 0.65 +- 0.59 degrees Celsius'

The figure shows that Ridge provides a good approximation but its predictions are somewhat
lagged. The model takes at least one day to react to the current trend and so induces a non-zero
error. On the bottom-end of the figure, the plot of residuals shows that the larger is the change in
temperature w.r.t. the previous day (i.e. a high volatility among consecutive days is present), the
larger is the error due to the lagged limitations of the estimator.

Even though these results suggest that the only values of the series are not sufficient to build a
robust forecasting model (e.g. we may think that other, more expressive features are needed), the
average absolute error 0.65 and the standard deviation is 0.59, which may be acceptable values for
our domain after all.

Predicting a value further than one day ahead is not possibile at the moment, but many strategies
exist to expand the forecast horizon. For example, one can train different models on different target
variables: one encoding the value one day ahead (i.e. what we have done here), one with the value
two days ahead as target, and so on. In this experimental setting, you would end up having one
model per horizon step, which could add some computational cost.

#### Exercise 2.9

As a further exercise, we leave to you the tweaking of this pipeline to test and visually assess the
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performance of the remaining regressors.
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