
Data Science And Database Technology Triggers

1
DB

MG

Triggers

The following relations are given (primary keys are underlined, optional attributes are denoted with *):

COURSE(CourseCode, CourseName, Credits)
STUDENT(RegNum, StudentName, YearFirstEnrollment)
EXAM_REGISTRATION(CourseCode, RegNum, Date, Score)
GRANT_APPLICATION(RegNum, RequestDate)
STUDENT_RANKING(RegNum, TotalPoints)
GRANT_AVAILABILITY(Grant#, CourseCode, TeachingHours)
GRANT_ASSIGNMENT(Grant#, RegNum, TeachingHours)
NOTIFICATION(Not#, Grant#, RegNum*, Message)

The trigger application deals with the assignment of student grants for supporting teaching activities.
Students applying for a student grant are inserted into a ranking (reported in table STUDENT
RANKING). When a new grant becomes available, the student recipient of the grant is selected from the
ranking. The same student may be the recipient of more than one grant, provided that she/he does not
exceed 150 hours of teaching activities. Write the triggers managing the following tasks for the
automatic assignment of student grants.
(1) Grant application. A student applies for the assignment of a student grant (insertion into table

GRANT_APPLICATION). The application is accepted if (i) the student has acquired at least 120
credits on passed exams (i.e., on exams with score above 17) and (ii) the student is not yet in the
ranking (i.e., in table STUDENT_RANKING). If any of the two requirements is not satisfied, the
application is rejected. If the application is accepted, the student is inserted in the ranking. The total
points (attribute TotalPoints) of the student are given by the average score computed only on passed
exams divided by the years elapsed from the student first enrollment (the current year is given by the
variable YEAR(SYSDATE)).

(2) When a new grant becomes available (insertion into table GRANT_AVAILABILITY), the recipient
student is selected from the ranking. The recipient is the student with the highest ranking that
satisfies the following requirements: (i) she/he has passed the exam for the course on which the grant
is available, and (ii) she/he does not exceed 150 teaching hours overall (including also the new
grant). Suppose that at most one student satisfies the above requirements. If the grant is assigned,
table GRANT_ASSIGNMENT should be appropriately modified. The result of the assignment
process must be notified both in the positive case (the grant is assigned) and in the negative case (no
appropriate student is available, in this case the RegNum attribute takes the NULL value). The Not#
attribute is a counter, which is incremented for each new notification.

Data Science And Database Technology Triggers

2
DB

MG

Draft solution
Grant Application

CREATE OR REPLACE TRIGGER MANAGE_GRANT_APPLICATION
AFTER INSERT ON GRANT_APPLICATION
FOR EACH ROW
DECLARE

TOTALCREDITS NUMBER;
SCOREAVG NUMBER;
X NUMBER;
YEAR DATE;

BEGIN

---check if the student is in the ranking
SELECT COUNT(*) INTO X
FROM STUDENT_RANKING
WHERE RegNum = :NEW.RegNum;

-- check if the application can be accepted
IF (X < > 0) THEN
 --- the application is rejected

 RAISE_APPLICATION_ERROR(-20500,’The application cannot be accepted’);
END IF;

--- requirements verification
SELECT SUM(Credits), AVG(Score) INTO TOTALCREDITS, SCOREAVG
FROM EXAM_REGISTRATION E, COURSE C
WHERE E.CourseCode = C.CourseCode
AND RegNum = :NEW.RegNum AND Score ≥ 18;

-- check if the application can be accepted
IF (TOTALCREDITS<120) THEN
 --- the application is rejected

 RAISE_APPLICATION_ERROR(-20500,’The application cannot be accepted’);
END IF;

---the application is accepted
---insertion in the ranking
SELECT YearFirstEnrollment INTO YEAR
FROM STUDENT
WHERE RegNum = :NEW.RegNum;

INSERT INTO STUDENT_RANKING(RegNum, TotalPoints)
VALUES (:NEW.RegNum, SCOREAVG/(YEAR(SYSDATE)- YEAR));

END;

Data Science And Database Technology Triggers

3
DB

MG

Grant Assignment

CREATE OR REPLACE TRIGGER GRANT_ASSIGNMENT
AFTER INSERT ON GRANT_AVAILABILITY
FOR EACH ROW
DECLARE
 X NUMBER;
 Y NUMBER;

MYRegNum NUMBER;
BEGIN

--- check the existence of best student meeting constraints
---compute the maximum value of TotalPoints (if any)

SELECT MAX(TotalPoints) INTO X
FROM STUDENT_RANKING
WHERE RegNum IN
 (SELECT RegNum
 FROM EXAM_REGISTRATION
 WHERE CourseCode = :NEW.CourseCode AND Score ≥ 18)

AND RegNum NOT IN (SELECT RegNum
 FROM GRANT_ASSIGNMENT
 GROUP BY RegNum
 HAVING SUM(TeachingHours) + :NEW.TeachingHours >150);

--- notification management
--- read the maximum value of NOT#
SELECT MAX(NOT#) INTO Y
FROM NOTIFICATION;

IF (Y IS NULL) THEN
 Y := 0;
END IF;

IF (X IS NOT NULL) THEN

--- best student is assigned grant
 SELECT RegNum INTO MYRegNum

FROM STUDENT_RANKING
 WHERE TotalPoints = X

AND RegNum IN
 (SELECT RegNum
 FROM EXAM_REGISTRATION
 WHERE CourseCode = :NEW.CourseCode AND Score ≥ 18)

AND RegNum NOT IN (SELECT RegNum
 FROM GRANT_ASSIGNMENT
 GROUP BY RegNum
 HAVING SUM(TeachingHours) + :NEW.TeachingHours >150);

--- Students who have passed
the exam

-- Students who exceed 150
teaching hours

Data Science And Database Technology Triggers

4
DB

MG

INSERT INTO GRANT_ASSIGNMENT(Grant#, RegNum, TeachingHours)
 VALUES (:NEW.Grant#,MYRegNum,:NEW.TeachingHours);

INSERT INTO NOTIFICATION(NOT#, Grant#, RegNum, Message)
 VALUES (Y+1, :NEW.Grant#, MYRegNum, "GRANT ASSIGNED");

ELSE

--- no appropriate student found
 INSERT INTO NOTIFICATION(NOT#, Grant#, RegNum, Message)
 VALUES (Y+1, :NEW.Grant#, NULL, "GRANT NOT ASSIGNED");
END IF;

END;

