Data warehouse
Introduction
Decision support systems

• Huge *operational databases* are available in most companies
 • these databases may provide **a large wealth** of useful information

• Decision support systems provide means for
 • in depth analysis of a company’s business
 • *faster and better* decisions
Strategic decision support

- Demand evolution analysis and forecast
- Critical business areas identification
- Budgeting and management transparency
 - reporting, practices against frauds and money laundering
- Identification and implementation of winning strategies
 - cost reduction and profit increase
Business Intelligence

• BI provides support to strategic decision support in companies
• Objective: transforming company data into actionable information
 – at different detail levels
 – for analysis applications
• Users may have heterogeneous needs
• BI requires an appropriate hardware and software infrastructure
Applications

- Manufacturing companies: order management, client support
- Distribution: user profile, stock management
- Financial services: buyer behavior (credit cards)
- Insurance: claim analysis, fraud detection
- Telecommunication: call analysis, churning, fraud detection
- Public service: usage analysis
- Health: service analysis and evaluation
Business intelligence at a glance

Data sources
- External data sources

Data storage
- Data warehouse
- Data marts

Data analysis
- OLAP Analysis
- Data mining

Result
- Data visualization
- Decision
- Knowledge management
Type of Information processing

- Transaction processing
- Analytical processing
Transaction processing

• On Line Transaction Processing (OLTP)
 – Traditional DBMS usage
• Characterized by
 – snapshot of current data values
 – detailed data, relational representation
 – structured, repetitive operations
 – read/write access to few records
 – short transactions
 – isolation, reliability, and integrity are critical (ACID)
 – database size ≈ 100MB-GB
Analytical processing

• On Line Analytical Processing (OLAP)
 – Decision support applications
• Characterized by
 – “historical” data
 – consolidated, integrated data
 – ad hoc applications
 – read access to millions of records
 – complex queries
 – consistency before and after periodical loads
 – database size ≈ 100GB-TB
Data warehouse

- Database devoted to decision support, which is kept separate from company operational databases
- Data which is
 - devoted to a specific subject
 - Integrated and consistent
 - time dependent, non volatile
used for decision support in a company

W. H. Inmon, Building the data warehouse, 1992
Why separate data?

• Performance
 – complex queries reduce performance of operational transaction management
 – different access methods at the physical level

• Data management
 – missing information (e.g., history)
 – data consolidation
 – data quality (inconsistency problems)
Data model
Multidimensional representation

- Data are represented as an (hyper)cube with three or more dimensions
- Measures on which analysis is performed: cells at dimension intersection
- Data warehouse for tracking sales in a supermarket chain:
 - dimensions: product, shop, time
 - measures: sold quantity, sold amount, ...
Multidimensional representation

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Relational representation: star model

- Numerical measures stored in the *fact table*
 - attribute domain is numeric
- *Dimensions* describe the context of each measure in the fact table
 - characterized by many descriptive attributes
Example

Data warehouse for tracking sales in a supermarket chain
Data warehouse size

- Time dimension: 2 years x 365 days
- Shop dimension: 300 shops
- Product dimension: 30,000 products, of which 3,000 sold every day in every shop
- Number of rows in the fact table:
 \[730 \times 300 \times 3000 = 657 \text{ millions} \]

\[\Rightarrow \text{Size of the fact table} \approx 21 \text{GB} \]
NOSQL data representation

- A database is a set of collections
- Each collection contains a set of documents
- Each document is described by a list of key-value fields and each field can hold any data type
- Documents from the same collection can be heterogeneous
- Since the data representation is schema-less it not required to define the schema of the documents a-priori and objects of the same collections can be characterized by different fields

<table>
<thead>
<tr>
<th>Relational database</th>
<th>NOSQL database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>Collection</td>
</tr>
<tr>
<td>Row</td>
<td>Document</td>
</tr>
<tr>
<td>Column</td>
<td>Field</td>
</tr>
</tbody>
</table>
Example of Document Data

- Records are stored into Documents
 - field-value pairs
 - similar to JSON objects
 - may be nested

```json
{
  _id: <ObjectId>,
  username: "123xyz",
  contact: {
    phone: "123-456-7890",
    email: "xyz@example.com"
  },
  access: {
    level: 5,
    group: "dev"
  }
}
```
Example of Document Data

- Relations among documents are inefficient, and leads to de-normalization
 - Object(ID) reference, with no native join
Types of NoSQL databases

- **Key-Value**
- **Column-Family**
- **Graph**
- **Document**
Data analysis
Data analysis tools

• OLAP analysis: complex aggregate function computation
 – support to different types of aggregate functions (e.g., moving average, top ten)
• Data analysis by means of data mining techniques
 – various analysis types
 – significant algorithmic contribution
Key Performance Indicator (KPI)

- KPIs are measurable values that demonstrate how effectively a company is achieving key business objectives.
- They are used to periodically assess at multiple levels the performance of organizations and their success at reaching targets
 - high-level KPIs may focus on the overall performance of the business
 - low-level KPIs may focus on processes in specific areas/departments (e.g., sales, marketing, HR).
- One of the most important aspects of KPIs is that they are a form of communication.
- Example KPIs: Days to deliver an order, number of new customers acquired, employee satisfaction, …
Data analysis tools

• Presentation
 – separate activity: data returned by a query may be rendered by means of different presentation tools

• Motivation search
 – Data exploration by means of progressive, “incremental” refinements (e.g., drill down)
Data visualization
Informative Dashboard

• A dashboard is a user interface that organizes and presents information in a way that is easy to read.
• It is a visual display of the most important information needed to achieve one or more objectives
• Dashboard are small and concise to allow monitoring relevant phenomena at a glance
• Visual Business Intelligence for enlightening analysis and communication
Data warehouse architectures
Data warehouse architectures

• Separation between transactional computing and data analysis
 – avoid one level architectures

• Architectures characterized by two or more levels
 – separate to a different extent data incoming into the data warehouse from analyzed data
 – more scalable
Data warehouse: architecture

Data warehouse

ETL tools

Metadata

(External) data sources

DW management

OLAP servers

Analysis tools

Data marts

Metadata

Data warehouse

Data marts

Data Analysis

Data warehouse: architecture

ETL tools

Metadata

(External) data sources

DW management

OLAP servers

Analysis tools

Data marts

Data Analysis
Data warehouse and data mart

Company data warehouse: it contains *all* the information on the company business
- extensive functional modelling process
- design and implementation require a long time

Data mart: departimental information subset focused on a given subject
- two architectures
 - dependent, fed by the company data warehouse
 - independent, fed directly by the sources
- faster implementation
- requires careful design, to avoid subsequent data mart integration problems
Servers for Data Warehouses

- ROLAP (Relational OLAP) server
 - extended relational DBMS
 - compact representation for sparse data
 - SQL extensions for aggregate computation
 - specialized access methods which implement efficient OLAP data access

- MOLAP (Multidimensional OLAP) server
 - data represented in proprietary (multidimensional) matrix format
 - sparse data require compression
 - special OLAP primitives

- HOLAP (Hybrid OLAP) server

- NOSQL architectures
Extraction, Transformation and Loading (ETL)

• Prepares data to be loaded into the data warehouse
 – data extraction from (OLTP and external) sources
 – data cleaning
 – data transformation
 – data loading

• Performed
 – when the DW is first loaded
 – during periodical DW refresh
ETL process

- **Data extraction**: data acquisition from sources
- **Data cleaning**: techniques for improving data quality (correctness and consistency)
- **Data transformation**: data conversion from operational format to data warehouse format
- **Data loading**: update propagation to the data warehouse
Metadata

metadata = data about data

• Different types of metadata:
 – for data transformation and loading: describe data sources and needed transformation operations
 • Useful using a common notation to represent data sources and data after transformation
 • CWMI (Common Warehouse Metadata Initiative): standard proposed by OMG to exchange data between DW tools and repository of metadata in heterogenous and distributed environments
 – for data management: describe the structure of the data in the data warehouse
 • also for materialized view
 – for query management: data on query structure and to monitor query execution
 - SQL code for the query
 - execution plan
 - memory and CPU usage
Two level architecture

Data sources (operational and external) → ETL tools → Metadata → DW management → OLAP servers → Data warehouse → Data marts → Analysis tools → Data warehouse level → Data analysis

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Copyright – All rights reserved
Two level architecture features

- Decoupling between source and DW data
 - management of external (not OLTP) data sources (e.g., text files)
 - data modelling suited for OLAP analysis
 - physical design tailored for OLAP load
- Easy management of different temporal granularity of operational and analytical data
- Partitioning between transactional and analytical load
- “On the fly” data transformation and cleaning (ETL)
Three level architecture

- **Data sources (operational and external)**
 - ETL tools
 - Staging area
 - Data warehouse level
 - ETL level

- **Data warehouse**
 - OLAP servers
 - Meta data
 - DW management
 - Loading
 - Analysis tools
 - Data analysis

- **Data marts**

From Golfarelli, Rizzi, "Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006
Three level architecture features

• **Staging area:** buffer area allowing the separation between ET management and data warehouse loading
 – complex transformation and cleaning operations are eased
 – provides an integrated model of business data, still close to OLTP representation
 – sometime denoted as Operational Data Store (ODS)

• Introduces further redundancy
 – more disk space is required for data storage