
Big Data: Architectures and Data Analytics

September 17, 2020

Student ID __

First Name __

Last Name __

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the input HDFS folder myFolder that contains the following two

files:

 ProfilesItaly.txt

o the text file ProfilesItaly.txt contains the following three lines (size: 37

bytes)

Paolo,Turin

Luca,Turin

Giovanni,Turin

 ProfilesFrance.txt

o the text file ProfilesFrance.txt contains the following two lines (size: 24

bytes)

Paolo,Nice

Luis,Paris

Suppose that you are using a Hadoop cluster that can potentially run up to 10

instances of the mapper class in parallel. Suppose the HDFS block size is 256MB.

Suppose to execute a MapReduce application for Hadoop that analyzes the content

of myFolder. Suppose the map phase emits the following key-value pairs (the key

part is a country while the value part is always 1):

(“Turin”, 1)

(“Turin”, 1)

(“Turin”, 1)

(“Nice”, 1)

(“Paris”, 1)

Suppose the number of instances of the reducer class is set to 4 and suppose the

reduce method of the reducer class sums the values associated with each key and

emits one pair (country, sum values) for each key. Suppose the following pairs are

overall emitted by the reduce phase:

(“Turin”, 3)

(“Nice”, 1)

(“Paris”, 1)

Considering all the instances of the mapper class, overall, how many times is the

map method invoked?

 a) 2

 b) 3

 c) 4

 d) 5

 2. (2 points) Consider the following Spark application.

package it.polito.bigdata.spark.exam;

import ….;

public class SparkDriver {

 public static void main(String[] args) {

 // Create a configuration object and set the name of the application

 SparkConf conf = new SparkConf().setAppName("Spark Code");

 // Create a Spark Context object

 JavaSparkContext sc = new JavaSparkContext(conf);

 // Read input file

 JavaRDD<String> inputRDD = sc.textFile("HumidityReadings.txt");

 // Print on the standard output the total number of input lines

 System.out.println("Total number of lines: " + inputRDD.count());

 // Select the content of the field humidity

 JavaRDD<Double> humiditiesRDD = inputRDD.map(line ->

 Double.parseDouble(line.split(",")[1]));

 // Compute the minimum humidity

 Double minHum = humiditiesRDD.reduce((hum1, hum2) -> {

 if (hum1 < hum2)

 return hum1;

 else

 return hum2;

 });

 // Print on the standard output of minimum humidity

 System.out.println("Min. humidity: " + minHum);

// Select low humidities

 JavaRDD<Double> lowHumiditiesRDD =

 humiditiesRDD.filter(humidity -> humidity > 40);

 // Store the content of lowHumiditiesRDD

 lowHumiditiesRDD.saveAsTextFile("outputFolder/");

// Close the Spark context

 sc.close();

 }

}

Suppose the input file HumidityReadings.txt is read from HDFS. Suppose you

execute this Spark application only 1 time. Which one of the following statements is

true?

 a) This application reads the content of HumidityReadings.txt 1 time

 b) This application reads the content of HumidityReadings.txt 2 times

 c) This application reads the content of HumidityReadings.txt 3 times

 d) This application reads the content of HumidityReadings.txt 6 times

Part II

PoliTV is an international online streaming company focused on movies. Its users can

watch the available movies through smart TVs, PCs, or mobile devices. The managers of

PoliTV are interested in computing a set of specific statistics based on the following input

data sets/files.

 Users.txt

o Users.txt is a large text file containing the list of registered users of PoliTV.

PoliTV has millions of users, i.e., Users.txt has millions of lines.

o Each line of Users.txt is associated with the profile of one user and has the

following format

 Username,Gender,YearOfBirth,Country

where, Username is the unique user identifier, gender is his/her

gender, YearOfBirth is his/her year of birth, and Country is the country

where he/she resides.

 For example, the line

PaoloG76,Male,1976,Italy

o means that the user identified by the username “PaoloG76” is a “Male”, who

was born in 1976 and resides in Italy.

 Movies.txt

o Movies.txt is a large text file containing the catalog of available movies (more

than 100000 movies).

o Each line of Movies.txt is associated with one movie and has the following

format

 MID,Title,Director,ReleaseDate

where, MID is the unique movie identifier, Title is its title, Director is its

director, and RelaseDate is the date in which the movie was released.

 For example, the line

MID124,Ghostbusters,Ivan Reitman,1984/05/01

means that the title of movies “MID1124” is “Ghostbusters”, its

director is “Ivan Reitman” and the movie was released on May 1,

1984.

 WatchedMovies.txt

o WatchedMovies.txt is a large text file.

o Every time a user watches a movie, a new line is appended to the end of

WatchedMovies.txt. The data collected in the last 10 years are currently

stored in WatchedMovies.txt, i.e., WatchedMovies.txt contains billions of

lines.

o Each line of WatchedMovies.txt has the following format

 Username,MID,StartTimestamp,EndTimestamp

where Username is a user identifier and MID is a movie identifier. The

meaning of each line is “Username watched MID from

StartTimestamp to EndTimestamp”.

 For example, the line

PaoloG76,MID124,2010/06/01_14:18,2010/06/01_16:10

means that user PaoloG76 watched movie MID124 from 14:18 of

June 1, 2010 to 16:10 of June 1, 2010.

Exercise 1 – MapReduce and Hadoop (7 points)
The managers of PoliTV are interested in performing some analyses about the watched
movies.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

1. Movies watched by one single user in year 2019. The application considers only the

visualizations related to year 2019 (i.e., the lines of WatchedMovies with

StartTimestamp in the range January 1, 2019 – December 31, 2019) and selects
the movies that have been watched by one single user in 2019. Store the identifiers
(MIDs) of the selected movies in the output HDFS folder (one MID per line).

Note. If a movie has been watched many times in 2019 but always by the same
user, that movie satisfies the constraint and must be selected.

Suppose that the input is WatchedMovies.txt and it has been already set and also the
name of the output folder has been already set.

 Write only the content of the Mapper and Reducer classes (map and reduce
methods. setup and cleanup if needed). The content of the Driver must not be
reported.

 Use the next two specific multiple-choice questions to specify the number of
instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes report for each of them:

o name of the class

o attributes/fields of the class (data type and name)

o personalized methods (if any), e.g, the content of the toString() method if you

override it

o do not report get and set methods. I suppose they are "automatically

defined"

Exercise 1 - Number of instances of the reducer - Job 1 - MapReduce and Hadoop

(0.5 points)

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1

Exercise 1 - Number of instances of the reducer - Job 2 - MapReduce and Hadoop

(0.5 points)

Select the number of instances of the reducer class of the second Job

(a) One single job is needed for this MapReduce application

(b) 0

(c) exactly 1

(d) any number >=1

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliTV are interested in performing some analyses about the watched

movies.

Develop one single application to address all the analyses they are interested in. The

application has five arguments: the three input files Users.txt, Movies.txt, and
WatchedMovies.txt and two output folders, “outPart1/” and “outPart2/”, which are
associated with the outputs of the following Points 1 and 2, respectively.

Specifically, design a single application, based on Spark, and write the corresponding
code, to address the following points:

1. Movies that have been watched frequently but only in one year in the last five years .

Considering only the lines of WatchedMovies.txt related to the last five years (i.e., the

lines with StartTimestamp in the range September 17, 2015 - September 16, 2020), the
application selects the movies that (i) have been watched only in one of those 5 years
and (ii) at least 1000 times in that year. For each of the selected movies, the

application stores in the first HDFS output folder its identifier (MID) and the single year
in which it has been watched at least 1000 times (one pair (MID, year) per line).

Note. The value of StartTimestamp is used to decide in which year a user watched a
specific movie. Do not consider the value of EndTimestamp.

Point 1: Examples

 For instance, suppose that movie MID15 was watched 1025 times in year 2016

and it was never watched in the other four years. MID15 is selected and the
following pair is stored in the output:

 MID15,2016

 For instance, suppose that movie MID56 was watched 1056 times in year 2016

and 10 times in year 2018. MID56 must not be selected because it has been

watched in more than one year (considering the last five years).

2. Most popular movie in at least two years. Considering all the lines of

WatchedMovies.txt (i.e., all years), the application selects the movies that have been
the most popular movie in at least two years. The annual popularity of a movie in a
specific year is given by the number of distinct users who watched that movie in that

specific year. A movie is the most popular movie in a specific year if it is associated
with the highest annual popularity of that year. The application stores in the second
HDFS output folder the identifiers (MIDs) of the selected movies (one MID per line).

Note. The value of StartTimestamp is used to decide in which year a user watched a
specific movie. Do not consider the value of EndTimestamp.

Point 2: Example

In this toy example, suppose that there are only four movies (MID1, MID2, MID3, and

MID4) and only five years (2010, 2011, 2012, 2013, and 2014).

The following table reports, for this toy example, the number of distinct users who

watched each of the considered movies in each of the considered years. The most
popular movie(s) of each year is (are) highlighted in boldface. Note that many movies
can be the most popular movie of the same year (i.e., many movies can be associated

with the highest annual popularity of a specific year).

 2010 2011 2012 2013 2014

MID1 100 120 5 50 20

MID2 10 3 15 10 5

MID3 15 10 50 30 55

MID4 50 10 150 50 10

Hence

 MID1 is the most popular movie in years 2010, 2011, and 2013

 MID2 is never the most popular movie

 MID3 is the most popular movie in year and 2014

 MID4 is the most popular movie in years 2012 and 2013

It follows that, movies MID1 and MID4 are selected and stored in the second output
folder of this application because they have been the most popular movie in at least
two years. Movie MID2 and MID3 are discarded because they do not satisfy the

constraint.

For the sake of simplicity, in this toy example only four movies and five years are

considered but pay attention that WatchedMovies.txt contains the data collected in the
last 10 years and the information about the visualizations of more than 100000 movies.

Predefined Template
...

/* Suppose all the needed imports are already set */

…

public class SparkDriver {

 public static void main(String[] args) {
 String inUsers;
 String inMovies;

 String inWatchedMovies;
 String outputPathPart1;
 String outputPathPart2;

 inUsers = "Users.txt";
 inMovies = "Movies.txt";

 inWatchedMovies = " WatchedMovies.txt";

 outputPathPart1 = "outPart1/";
 outputPathPart2 = "outPart2/";

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf().setAppName("Spark Exam - Exercise #2");

 // Create a Spark Context object
 JavaSparkContext sc = new JavaSparkContext(conf);

 /* Write your code here */

}

