
DataBase and Data Mining Group Andrea Pasini, Elena Baralis

Data Science Lab
Introduction to Python



Summary

▪ Python engine 
▪ Basic components and setup

▪ Python language
▪ Data types, object oriented programming

▪ Numpy library
▪ Computation with multi-dimensional arrays

▪ Pandas library
▪ Tabular data and data preprocessing

▪ Scikit-Learn library
▪ Machine learning and data science tools

2



Introduction to Python

▪ Python language
▪ Clean and concise syntax

▪ No semi-colons to end instructions
▪ No braces to define if clauses and for loops
▪ No need to specify variable types
▪ ...

3

List<String> l = new LinkedList<>();

for (int i=0; i<10; i++) {

l.add(i);

}

l = []

for i in range(0,10):

l.append(i)

Java

Python



Introduction to Python

▪ Python is an interpreted language
▪ Code is not compiled to machine language
▪ However the source code is compiled to an 

intermediate level, called bytecode
▪ For this reason, to run Python programs, you need 

an interpreter that is able to execute the bytecode

4



Introduction to Python

▪ Sequence of operations executed by the 
interpreter

5

l = []

for i in range(0,10):

l.append(i)

Python code (.py)

Syntax checker and translator

Bytecode (.pyc)

Python Virtual Machine (PVM)



Introduction to Python

▪ A common Python 3 setup on a Linux System
▪ Typically in the usr/bin folder:

▪ “python3” executable: run Python programs
▪ “pip3” executable: install Python packages
▪ “ipython3” executable: run programs line by line
▪ “jupyter” executable: run a jupyter notebook

6



Introduction to Python

▪ Executing a Python program

▪ Type in your terminal:
▪ cd ~/Documents/MyScript
▪ python3 my_script.py

7

print(“Hello”)

my_script.py

~/Documents/MyScript



Introduction to Python

▪ Running Python line by line with iPython
▪ Type in your terminal:

▪ ipython3 (or ipython, depending on your installation)

8



Introduction to Python

▪ Write your program line by line to see the results 
step by step...

9



Introduction to Python

▪ Python and iPython programs are the core for 
executing scripts, but...

▪ There are two typical scenarios:
1. Develop your Python project with an IDE

▪ Example: Visual Studio Code, PyCharm
▪ Debug and run your code inside the IDE

2. Develop and test a Python script with Jupyter 
notebook
▪ Inspect step by step the results
▪ Keep the history of the output of the script

10



Introduction to Python

▪ Scenario 1: PyCharm (IDE)

11

Project overview

Code

Run/Debug commands



Introduction to Python

▪ Scenario 1: PyCharm (IDE)
▪ When you click on the run button, the IDE will 

automatically call the “python” command to execute 
your script

12

Run command



Introduction to Python

▪ Scenario 2: Jupyter notebook
▪ Type in your terminal

▪ jupyter notebook
▪ Jupyter will open on your browser

13

Click to create a new 
notebook



Introduction to Python

▪ Scenario 2: Jupyter notebook

14

Markdown cell

Code cell

Result cell



Introduction to Python

▪ Scenario 2: Jupyter notebook
▪ Based on iPython command
▪ Each code cell can be executed separately by 

pressing CTR + ENTER

15

Code cell 1

Code cell 2



Introduction to Python

IDE vs Jupyter notebook
▪ IDE

▪ For more complex projects (many files)
▪ More powerful debug commands
▪ More powerful code editing tools

▪ Jupyter notebook
▪ For simple scripts and prototypes
▪ Great visualization tool

▪ Example: report with Python code and text for explanations

16



Introduction to Python

▪ Installing libraries
▪ Python language is provided with many useful 

libraries:
▪ Numpy, Pandas, Matplotlib, Scikit-learn, SciPy, ...

▪ To use any of them you first have to install it with the 
pip command:
▪ pip3 install numpy
▪ pip3 install pandas

17



Introduction to Python

▪ Virtual environments
▪ The pip command will associate the libraries to your 

default Python installation
▪ A more powerful way of managing libraries is to use 

a Python environment (virtualenv)
▪ Designed when you want to design different projects that 

use different libraries and configurations (e.g. versions)
• Each projects is associated to a virtual environment

18



Introduction to Python

▪ Virtual environments
▪ To create a new environment:

▪ cd ~/Documents/My_project
▪ virtualenv myenv

▪ It will create a new environment in your project folder

19



Introduction to Python

▪ Virtual environments
▪ To activate the created environment:

▪ cd ~/Documents/My_project
▪ source myenv/bin/activate

20



Introduction to Python

▪ Virtual environments
▪ After activation you can use the terminal to work 

within the environment

▪ Install libraries to the current environment
▪ pip3 install my_library

▪ Execute a script/notebook within the environment
▪ python3 my_script.py 
▪ jupyter notebook

21


