Classification fundamentals

Data Base and Data Mining Group of Politecnico di Torino

Elena Baralis, Tania Cerquitelli Politecnico di Torino

Classification

Objectives

- prediction of a class label
- definition of an interpretable model of a given phenomenon

Classification: definition

- Given
 - a collection of class labels
 - a collection of data objects labelled with a class label
- Find a descriptive profile of each class, which will allow the assignment of unlabeled objects to the appropriate class

Definitions

Training set

- Collection of labeled data objects used to learn the classification model
- Test set
 - Collection of labeled data objects used to validate the classification model

Classification techniques

- Decision trees
- Classification rules
- Association rules
- Neural Networks
- Naïve Bayes and Bayesian Networks
- k-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)

Evaluation of classification techniques

- Accuracy
 - quality of the prediction
- Efficiency
 - model building time
 - classification time
- Scalability
 - training set size
 - attribute number
- Robustness
 - noise, missing data
- Interpretability
 - model interpretability
 - model compactness

Decision trees

Data Base and Data Mining Group of Politecnico di Torino

Politecnico di Torino

Example of decision tree

T id	R e fu n d	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	Νo	Divorced	95K	Yes
6	Νo	Married	60K	No
7	Yes	Divorced	220K	No
8	Νo	Single	85K	Yes
9	Νo	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Training Data

Another example of decision tree

T id	R e fu n d	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Apply Model to Test Data

Test Data

R e fu n d	Marital Status	Taxable Income	Cheat	
N o	Married	80K	?	

 $D_{M}^{B}G$

 $D_M^B G$

 $D_{M}^{B}G$

Decision tree induction

Many algorithms to build a decision tree

- Hunt's Algorithm (one of the earliest)
- CART
- ID3, C4.5, C5.0
- SLIQ, SPRINT

General structure of Hunt's algorithm

Basic steps

- If D_t contains records that belong to the same class y_t
 - then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class
 - select the "best" attribute A on which to split D_t and label node t as A
 - split D_t into smaller subsets and recursively apply the procedure to each subset
- If D_t is an empty set
 - then t is a leaf node labeled as the default (majority) class, y_d

D _t , set of training	records
that reach a node	t

Single

Divorced

Married 120K

220K

Decision tree induction

Adopts a greedy strategy

- "Best" attribute for the split is selected locally at each step
 - not a global optimum
- Issues
 - Structure of test condition
 - Binary split versus multiway split
 - Selection of the best attribute for the split
 - Stopping condition for the algorithm

Structure of test condition

Depends on attribute type

- nominal
- ordinal
- continuous

Depends on number of outgoing edges

- 2-way split
- multi-way split

Splitting on nominal attributes

Multi-way split

use as many partitions as distinct values

Binary split

- Divides values into two subsets
- Need to find optimal partitioning

Splitting on ordinal attributes

Multi-way split

use as many partitions as distinct values

Binary split

- Divides values into two subsets
- Need to find optimal partitioning

Large

Size

Medium

Small

Splitting on continuous attributes

Different techniques

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic discretize during tree induction
 - Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering
- Binary decision (A < v) or (A \ge v)
 - consider all possible splits and find the best cut
 - more computationally intensive

(i) Binary split

(ii) Multi-way split

Selection of the best attribute

Before splitting:

10 records of class 0, 10 records of class 1

Which attribute (test condition) is the best?

Selection of the best attribute

- Attributes with *homogeneous* class distribution are preferred
- Need a measure of node impurity

Non-homogeneous, high degree of impurity

Homogeneous, low degree of impurity

Measures of node impurity

Many different measures available

- Gini index
- Entropy
- Misclassification error
- Different algorithms rely on different measures

Decision Tree Based Classification

Advantages

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Disadvantages

accuracy may be affected by missing data

Associative classification

Data Base and Data Mining Group of Politecnico di Torino

Politecnico di Torino

Associative classification

The classification model is defined by means of association rules

(Condition) $\rightarrow y$

- rule body is an itemset
- Model generation
 - Rule selection & sorting
 - based on support, confidence and correlation thresholds
 - Rule pruning

Database coverage: the training set is covered by

selecting topmost rules according to previous sort

Associative classification

Strong points

- interpretable model
- higher accuracy than decision trees
 - correlation among attributes is considered
- efficient classification
- unaffected by missing data
- good scalability in the training set size

Weak points

- rule generation may be slow
 - it depends on support threshold
- reduced scalability in the number of attributes
 - rule generation may become unfeasible

Neural networks

Data Base and Data Mining Group of Politecnico di Torino

Politecnico di Torino

Neural networks

- Inspired to the structure of the human brain
 - Neurons as elaboration units
 - Synapses as connection network

Structure of a neural network

 $D_{M}^{B}G$

From: Han, Kamber,"Data mining; Concepts and Techniques", Morgan Kaufmann 2006

From: Han, Kamber,"Data mining; Concepts and Techniques", Morgan Kaufmann 2006

Construction of the neural network

For each node, definition of

- set of weights
- offset value

providing the highest accuracy on the training data

 Iterative approach on training data instances

Neural networks

Strong points

- High accuracy
- Robust to noise and outliers
- Supports both discrete and continuous output
- Efficient during classification

Weak points

- Long training time
 - weakly scalable in training data size
 - complex configuration
- Not interpretable model
 - application domain knowledge cannot be exploited in the model

Bayesian Classification

Data Base and Data Mining Group of Politecnico di Torino

Politecnico di Torino

Let C and X be random variables P(C,X) = P(C|X) P(X)P(C,X) = P(X|C) P(C)Hence P(C|X) P(X) = P(X|C) P(C)and also P(C|X) = P(X|C) P(C) / P(X)

38

Bayesian classification

- Let the class attribute and all data attributes be random variables
 - C = any class label
 - $X = \langle x_1, ..., x_k \rangle$ record to be classified
- Bayesian classification
 - compute P(C|X) for all classes
 - probability that record X belongs to C
 - assign X to the class with *maximal* P(C|X)
- Applying Bayes theorem

 $P(C|X) = P(X|C) \cdot P(C) / P(X)$

- P(X) constant for all C, disregarded for maximum computation
- P(C) a priori probability of C

$$P(C) = N_c/N$$

Bayesian classification

- How to estimate P(X|C), i.e. $P(x_1,...,x_k|C)$?
- Naïve hypothesis

 $P(x_1,...,x_k|C) = P(x_1|C) P(x_2|C) ... P(x_k|C)$

- statistical independence of attributes x₁,...,x_k
- not always true
 - model quality may be affected
- Computing $P(x_k|C)$
 - for discrete attributes

 $P(x_k|C) = |x_{kC}| / N_c$

- where $|\boldsymbol{x}_{kC}|$ is number of instances having value \boldsymbol{x}_k for attribute k and belonging to class C
- for continuous attributes, use probability distribution
- Bayesian networks
 - allow specifying a subset of dependencies among attributes

Bayesian classification: Example

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	Ν
sunny	hot	high	true	Ν
overcast	hot	high	false	Ρ
rain	mild	high	false	Ρ
rain	cool	normal	false	Ρ
rain	cool	normal	true	Ν
overcast	cool	normal	true	Ρ
sunny	mild	high	false	Ν
sunny	cool	normal	false	Ρ
rain	mild	normal	false	Ρ
sunny	mild	normal	true	Ρ
overcast	mild	high	true	Ρ
overcast	hot	normal	false	Ρ
rain	mild	high	true	Ν

From: Han, Kamber,"Data mining; Concepts and Techniques", Morgan Kaufmann 2006

Bayesian classification: Example

outlook			
P(sunny p) = 2/9	P(sunny n) = 3/5		
P(overcast p) = 4/9	P(overcast n) = 0		
P(rain p) = 3/9	P(rain n) = 2/5		
temperature			
P(hot p) = 2/9	P(hot n) = 2/5		
P(mild p) = 4/9	P(mild n) = 2/5		
P(cool p) = 3/9	P(cool n) = 1/5		
humidity			
P(high p) = 3/9	P(high n) = 4/5		
P(normal p) = 6/9	P(normal n) = 2/5		
windy			
P(true p) = 3/9	P(true n) = 3/5		
P(false p) = 6/9	P(false n) = 2/5		

 $D_{M}^{B}G$

From: Han, Kamber,"Data mining; Concepts and Techniques", Morgan Kaufmann 2006

Data to be labeled

X = <rain, hot, high, false>

- For class p
 - $P(X|p) \cdot P(p) =$
 - $= P(rain|p) \cdot P(hot|p) \cdot P(high|p) \cdot P(false|p) \cdot P(p)$
 - $= 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$
- For class n
 - $P(X|n) \cdot P(n) =$ = P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false|n) \cdot P(n) = 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286

Model evaluation

Data Base and Data Mining Group of Politecnico di Torino

Politecnico di Torino

- Methods for performance evaluation
 - Partitioning techniques for training and test sets
- Metrics for performance evaluation
 - Accuracy, other measures
- Techniques for model comparison
 - ROC curve

Methods of estimation

- Partitioning labeled data in
 - training set for model building
 - test set for model evaluation
- Several partitioning techniques
 - holdout
 - cross validation
- Stratified sampling to generate partitions
 - without replacement
- Bootstrap
 - Sampling with replacement

Fixed partitioning

reserve 2/3 for training and 1/3 for testing

Appropriate for large datasets

- may be repeated several times
 - repeated holdout

Cross validation

Cross validation

- partition data into k disjoint subsets (i.e., folds)
- k-fold: train on k-1 partitions, test on the remaining one
 - repeat for all folds
- reliable accuracy estimation, not appropriate for very large datasets
- Leave-one-out
 - cross validation for k=n
 - only appropriate for very small datasets

- Evaluate the predictive accuracy of a model
- Confusion matrix
 - binary classifier

	PRE			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	a: TP (true positive) b: FN (false negative)
CLASS	Class=No	С	d	c: FP (false positive) d: TN (true negative)

Most widely-used metric for model evaluation

Accuracy	_ Nu	mber	of	correc	tly	classifi	ed	objects
recuracy	_	Nun	nber	of	classif	fied	objects	5

Not always a reliable metric

For a binary classifier

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	a (TP)	b (FN)		
CLASS	Class=No	с (FP)	d (TN)		
Accuracy =	$\frac{a+d}{a+b+c+d}$	$-=rac{TP}{TP}+TN$	+ TN + $FP + FN$		

Limitations of accuracy

Consider a binary problem

- Cardinality of Class 0 = 9900
- Cardinality of Class 1 = 100

Model

() \rightarrow class 0

- Model predicts everything to be class 0
 accuracy is 9900/10000 = 99.0 %
- Accuracy is misleading because the model does not detect any class 1 object

Limitations of accuracy

- Classes may have different importance
 - Misclassification of objects of a given class is more important
 - e.g., ill patients erroneously assigned to the healthy patients class
- Accuracy is not appropriate for
 - unbalanced class label distribution
 - different class relevance

Evaluate separately for each class

Recall (r) = $\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects belonging to C}}$

Precision (p) =
$$\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects assigned to C}}$$

Maximize

F - measure (F) =
$$\frac{2 rp}{r + p}$$

For a binary classification problem

on the confusion matrix, for the positive class

Precision (p) = $\frac{a}{a + c}$ Recall (r) = $\frac{a}{a + b}$ F - measure (F) = $\frac{2 rp}{r + p} = \frac{2 a}{2 a + b + c}$

