
1

 Word count problem

 Input: (unstructured) textual file

 Output: number of occurrences of each word
appearing in the input file

2

 Input file

 Output pairs

3

Toy example
file for Hadoop.
Hadoop running
example.

(toy, 1)
(example, 2)
(file, 1)
(for, 1)
(hadoop, 2)
(running, 1)

 Word count problem

 Input: a HDFS folder containing textual files

 Output: number of occurrences of each word
appearing in at least one file of the collection (i.e.,
files of the input directory)

 The only difference with respect to exercise
#1 is given by the input

 Now the input is a collection of textual files

4

 Input files

 Output pairs

5

Toy example
file for Hadoop.
Hadoop running

example.

(another, 1)
(example, 2)
(file, 2)
(for, 2)
(hadoop, 3)
(running, 1)
(toy, 1)

Another file for
Hadoop.

 PM10 pollution analysis

 Input: a (structured) textual file containing the
daily value of PM10 for a set of sensors

▪ Each line of the file has the following format

sensorId,date\tPM10 value (μg/m3)\n

 Output: report for each sensor the number of days
with PM10 above a specific threshold

▪ Suppose to set threshold = 50 μg/m3

6

 Input file

 Output pairs

7

s1,2016-01-01 20.5
s2,2016-01-01 30.1
s1,2016-01-02 60.2
s2,2016-01-02 20.4
s1,2016-01-03 55.5
s2,2016-01-03 52.5

(s1, 2)
(s2, 1)

 PM10 pollution analysis per city zone
 Input: a (structured) textual file containing

the daily value of PM10 for a set of city zones
▪ Each line of the file has the following format

zoneId,date\tPM10 value (μg/m3)\n

 Output: report for each zone the list of dates
associated with a PM10 value above a specific
threshold

▪ Suppose to set threshold = 50 μg/m3

8

 Input file

 Output pairs

9

zone1,2016-01-01 20.5
zone2,2016-01-01 30.1
zone1,2016-01-02 60.2
zone2,2016-01-02 20.4
zone1,2016-01-03 55.5
zone2,2016-01-03 52.5

(zone1, [2016-01-03, 2016-01-02])
(zone2, [2016-01-01])

 Average

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report for each sensor the average value
of PM10

10

 Input file

 Output pairs

11

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1, 45.4)
(s2, 34.3)

 Max and Min

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report for each sensor the maximum and
the minimum value of PM10

12

 Input file

 Output pairs

13

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1, max=60.2_min=20.5)
(s2, max=52.5_min=20.4)

 Inverted index

 Input: a textual file containing a set of sentences

▪ Each line of the file has the following format

sentenceId\tsentence\n

 Output: report for each word w the list of
sentenceIds of the sentences containing w

▪ Do not consider the words “and”, “or”, “not”

14

 Input file

 Output pairs

15

(hadoop, [Sentence#1, Sentence#2, Sentence#3])
(spark, [Sentence#1, Sentence#2])
(java, [Sentence#2])
(big, [Sentence#3])
(data, [Sentence#3])

Sentence#1 Hadoop or Spark
Sentence#2 Hadoop or Spark and Java
Sentence#3 Hadoop and Big Data

 Total income for each month of the year and
Average monthly income per year

 Input: a (structured) textual csv files containing
the daily income of a company

▪ Each line of the files has the following format

date\tdaily income\n

 Output:

▪ Total income for each month of the year

▪ Average monthly income for each year

16

 Input file

 Output

17

2015-11-01 1000
2015-11-02 1305
2015-12-01 500
2015-12-02 750
2016-01-01 345
2016-01-02 1145
2016-02-03 200
2016-02-04 500

(2015-11,2305)
(2015-12, 1250)
(2016-01, 1490)
(2016-02, 700)

(2015, 1777.5)

(2016,1095.0)

 Word count problem

 Input: (unstructured) textual file

 Output: number of occurrences of each word
appearing in the input file

 Solve the problem by using in-mapper
combiners

18

 Input file

 Output pairs

19

Toy example
file for Hadoop.
Hadoop running
example.

(toy, 1)
(example, 2)
(file, 1)
(for, 1)
(hadoop, 2)
(running, 1)

 Total count

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: total number of records

20

 Input file

 Output: 6

21

s1,2016-01-01,20.5
s2,2016-01-01,60.2
s1,2016-01-02,30.1
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

 Average
 Input: a collection of (structured) textual csv files

containing the daily value of PM10 for a set of
sensors
▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report for each sensor the average value
of PM10

 Suppose the number of sensors is equal to 2 and
their ids are s1 and s2

22

 Input file

 Output

23

s1,2016-01-01,20.5
s2,2016-01-01,60.2
s1,2016-01-02,30.1
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

s1, 45.4
s2, 34.3

 Select outliers

 Input: a collection of (structured) textual files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date\tPM10 value (μg/m3)\n

 Output: the records with a PM10 value below a
user provided threshold (the threshold is an
argument of the program)

24

 Input file

 Threshold: 21

 Output

25

s1,2016-01-01 20.5
s2,2016-01-01 60.2
s1,2016-01-02 30.1
s2,2016-01-02 20.4
s1,2016-01-03 55.5
s2,2016-01-03 52.5

s1,2016-01-01 20.5
s2,2016-01-02 20.4

 Top 1 most profitable date

 Input: a (structured) textual csv files containing
the daily income of a company

▪ Each line of the files has the following format

date\tdaily income\n

 Output:

▪ Select the date and income of the top 1 most profitable
date
▪ In case of tie, select the first date

26

 Input file

 Output

27

2015-11-01 1000
2015-11-02 1305
2015-12-01 500
2015-12-02 750
2016-01-01 345
2016-01-02 1145
2016-02-03 200
2016-02-04 500

2015-11-02 1305

 Top 2 most profitable dates

 Input: a (structured) textual csv files containing
the daily income of a company

▪ Each line of the files has the following format

date\tdaily income\n

 Output:

▪ Select the date and income of the top 2 most profitable
dates
▪ In case of tie, select the first 2 dates among the ones associated

with the highest income

28

 Input file

 Output

29

2015-11-01 1000
2015-11-02 1305
2015-12-01 500
2015-12-02 750
2016-01-01 345
2016-01-02 1145
2016-02-03 200
2016-02-04 500

2015-11-02 1305
2016-01-02 1145

 Dictionary

 Input: a collection of news (textual files)

 Output:

▪ List of distinct words occurring in the collection

30

 Input file

 Output

31

Toy example
file for Hadoop.
Hadoop running
example.

example
file
for
hadoop
running
toy

 Dictionary – Mapping word - integer

 Input: a collection of news (textual files)

 Output:

▪ List of distinct words occurring in the collection
associated with a set of unique integers
▪ Each word is associated with a unique integer (and viceversa)

32

 Input file

 Output

33

Toy example
file for Hadoop.
Hadoop running
example.

(example, 1)
(file , 2)
(for , 3)
(hadoop , 4)
(running , 5)
(toy , 6)

 Select maximum temperature for each date

 Input: two structured textual files containing the
temperatures gathered by a set of sensors

▪ Each line of the first file has the following format

sensorID,date,hour,temperature\n

▪ Each line of the second file has the following format

date,hour,temperature,sensorID\n

 Output: the maximum temperature for each date
(considering the data of both input files)

34

 Input files

 Output

35

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

2016-01-01 30.2
2016-01-02 31.5

2016-01-01,14:00,20.1,s3
2016-01-01,14:00,10.2,s4
2016-01-02,14:15,31.5,s3
2016-01-02,14:15,20.2,s4

 Filter the readings of a set of sensors based
on the value of the measurement

 Input: a set of textual files containing the
temperatures gathered by a set of sensors

▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:

▪ The lines of the input files associated with a
temperature value greater than 30.0

36

 Input file

 Output file

37

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

s2,2016-01-01,14:00,30.2
s2,2016-01-02,14:10,30.2

 Filter the readings of a set of sensors based
on the value of the measurement

 Input: a set of textual files containing the
temperatures gathered by a set of sensors

▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:

▪ The lines of the input files associated with a
temperature value less than or equal to 30.0

38

 Input file

 Output file

39

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

s1,2016-01-01,14:00,20.5
s1,2016-01-02,14:10,11.5

 Split the readings of a set of sensors based on
the value of the measurement
 Input: a set of textual files containing the

temperatures gathered by a set of sensors
▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:
▪ a set of files with the prefix “high-temp-” containing the lines

of the input files with a temperature value greater than 30.0

▪ a set of files with the prefix “normal-temp-” containing the
lines of the input files with a temperature value less than or
equal to 30.0

40

 Input file

 Output files

41

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,30.2

s2,2016-01-01,14:00,30.2
s2,2016-01-02,14:10,30.2

s1,2016-01-01,14:00,20.5
s1,2016-01-02,14:10,11.5

high-temp-m-00001 normal-temp-m-00001

 Split the readings of a set of sensors based on
the value of the measurement
 Input: a set of textual files containing the

temperatures gathered by a set of sensors
▪ Each line of the files has the following format

sensorID,date,hour,temperature\n

 Output:
▪ a set of files with the prefix “high-temp-” containing the

temperatures associated with the lines of the input files with
temperature values greater than 30.0

▪ a set of files with the prefix “normal-temp-” containing the
lines of the input files with a temperature value less than or
equal to 30.0

42

 Input file

 Output files

43

s1,2016-01-01,14:00,20.5
s2,2016-01-01,14:00,30.2
s1,2016-01-02,14:10,11.5
s2,2016-01-02,14:10,41.5

30.2
41.5

s1,2016-01-01,14:00,20.5
s1,2016-01-02,14:10,11.5

high-temp-m-00001 normal-temp-m-00001

 Stopword elimination problem

 Input:

▪ A large textual file containing one sentence per line

▪ A small file containing a set of stopwords
▪ One stopword per line

 Output:

▪ A textual file containing the same sentences of the large
input file without the words appearing in the small file

▪ The order of the sentences in the output file can be
different from the order of the sentences in the input file

44

 Input files

 Large file

 Stopword file

This is the first sentence and it contains some stopwords
Second sentence with a stopword here and another here
Third sentence of the stopword example

a
an
and
the

 Output file

This is first sentence it contains some stopwords
Second sentence with stopword here another here
Third sentence of stopword example

 Friends of a specific user
 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format

 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of Username2
(and vice versa)

▪ One username specified as parameter by means of the
command line

 Output:
▪ The friends of the specified username stored in a textual file

▪ One single line with the list of friends

47

 Input file

 Username parameter: User2
 Output file

User1,User2
User1,User3
User1,User4
User2,User5

User1 User5

 Potential friends of a specific user
 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format
 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of Username2 (and
vice versa)

▪ One username specified as parameter by means of the command
line

 Output:
▪ The potential friends of the specified username stored in a textual

file
▪ One single line with the list of potential friends

▪ User1 is a potential friend of User2 if they have at least one friend in
common

49

 Input file

 Username parameter: User2
 Output file

User1,User2
User1,User3
User1,User4
User2,User3
User2,User4
User2,User5
User5,User6

User1 User3 User4 User6

 Potential friends of a specific user

 Solve problem #23 by removing the friends of the
specified user from the list of its potential friends

51

 Input file

 Username parameter: User2
 Output file

User6

User1,User2
User1,User3
User1,User4
User2,User3
User2,User4
User2,User5
User5,User6

 Compute the list of friends for each user

 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format

 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of
Username2 (and vice versa)

 Output:

▪ A textual file containing one line for each user. Each line
contains a user and the list of its friends

53

 Input file

 Output file

User1,User2
User1,User3
User1,User4
User2,User5

User1: User2 User 3 User 4
User2: User1 User5
User3: User1
User4: User1
User5: User2

 Compute the list of potential friends for each
user
 Input:

▪ A textual file containing pairs of users (one pair per line)
▪ Each line has the format
 Username1,Username2

▪ Each pair represents the fact that Username1 is friend of Username2
(and vice versa)

 Output:
▪ A textual file containing one line for each user with at least

one potential friend. Each line contains a user and the list of
its potential friends

▪ User1 is a potential friend of User2 if they have at least one
friend in common

55

 Input file

 Output file

User1: User2 User3 User4 User5
User2: User1 User3 User4 User6
User3: User1 User2 User4 User5
User4: User1 User2 User3 User5
User5: User1 User3 User4
User6: User2

User1,User2
User1,User3
User1,User4
User2,User3
User2,User4
User2,User5
User5,User6

 Word (string) to integer conversion
 Input:

▪ A large textual file containing a list of words per line

▪ The small file dictionary.txt containing the mapping of each
possible word appearing in the first file with an integer. Each
line contain the mapping of a word with an integer and it has
the following format
▪ Word\tInteger\n

 Output:
▪ A textual file containing the content of the large file where

the appearing words are substituted by the corresponding
integers

57

 Input files

 Large textual file

 Small dictionary file

TEST CONVERTION WORD TO INTEGER
SECOND LINE TEST WORD TO INTEGER

1 CONVERTION
2 INTEGER
3 LINE
4 SECOND
5 TEST
6 TO
7 WORD

 Output file

5 1 7 6 2
4 3 5 7 6 2

 Categorization rules

 Input:

▪ A large textual file containing a set of records
▪ Each line contains the information about one single user

▪ Each line has the format

 UserId,Name,Surname,Gender,YearOfBirth,City,Education

▪ A small file with a set of business rules that are used to
assign each user to a category
▪ Each line contains a business rule with the format

 Gender=<value> and YearOfBirth=<value> -> Category

▪ Rules are mutually exclusive

60

 Output:

▪ One record for each user with the following format
▪ The original information about the user plus the category

assigned to the user by means of the business rules

▪ Since the rules are mutually exclusive, there is only one rule
applicable for each user

▪ If no rules is applicable/satisfied by a user, assign the user to the
“Unknown” category

61

 Users

 Business rules

User#1,John,Smith,M,1934,New York,Bachelor
User#2,Paul,Jones,M,1956,Dallas,College
User#3,Jenny,Smith,F,1934,Philadelphia,Bachelor
User#4,Laura,White,F,1926,New York,Doctorate

Gender=M and YearOfBirth=1934 -> Category#1
Gender=M and YearOfBirth=1956 -> Category#3
Gender=F and YearOfBirth=1934 -> Category#2
Gender=F and YearOfBirth=1956 -> Category#3

 Output

User#1,John,Smith,M,1934,New York,Bachelor,Category#1
User#2,Paul,Jones,M,1956,Dallas,College,Category#3
User#3,Jenny,Smith,F,1934,Los Angleses,Bachelor,Category#2
User#4,Laura,White,F,1926,New York,Doctorate,Unknown

 Mapping Question-Answer(s)

 Input:

▪ A large textual file containing a set of questions
▪ Each line contains one question

▪ Each line has the format

 QuestionId,Timestamp,TextOfTheQuestion

▪ A large textual file containing a set of answers
▪ Each line contains one answer

▪ Each line has the format

 AnswerId,QuestionId,Timestamp,TextOfTheAnswer

64

 Output:

▪ One line for each pair (question,answer) with the
following format
▪ QuestionId,TextOfTheQuestion, AnswerId,TextOfTheAnswer

65

 Questions

 Answers

Q1,2015-01-01,What is ..?
Q2,2015-01-03,Who invented ..

A1,Q1,2015-01-02,It is ..
A2,Q2,2015-01-03,John Smith
A3,Q1,2015-01-05,I think it is ..

 Output

Q1,What is ..?,A1,It is ..
Q1,What is ..?,A3,I think it is ..
Q2,Who invented ..,A2,John Smith

 User selection

 Input:

▪ A large textual file containing a set of records
▪ Each line contains the information about one single user

▪ Each line has the format

 UserId,Name,Surname,Gender,YearOfBirth,City,Education

▪ A large textual file with pairs (Userid, MovieGenre)
▪ Each line contains pair Userid, MovieGenre with the format

 Userid,MovieGenre

 It means that UserId likes movies of genre MovieGenre

68

 Output:

▪ One record for each user that likes both Commedia and
Adventure movies

▪ Each output record contains only Gender and
YearOfBirth of a selected user
▪ Gender,YearOfBirth

▪ Duplicate pairs must not be removed

69

 Users

 Likes

User#1,John,Smith,M,1934,New York,Bachelor
User#2,Paul,Jones,M,1956,Dallas,College
User#3,Jenny,Smith,F,1934,Philadelphia,Bachelor

User#1,Commedia
User#1,Adventure
User#1,Drama
User#2,Commedia
User#2,Crime
User#3,Commedia
User#3,Horror
User#3,Adventure

 Output

M,1934
F,1934

