

2

 In some applications data are read from two or
more datasets

 Datasets could have different formats

 Hadoop allows reading data from multiple
inputs (multiple datasets) with different formats

 One different mapper for each input dataset must be
specified

 However, the key-value pairs emitted by the mappers
must be consistent in terms of data types

3

 Example of a use case

 Input data collected from different sensors

 All sensors measure the same “measure”

 But sensors developed by different vendors use a
different data format to store the gathered
data/measurements

4

 In the driver

 Use the addInputPath method of the
MultipleInputs class multiple times to

▪ Add one input path at a time

▪ Specify the input format class for each input path

▪ Specify the Mapper class associated with each input
path

5

 E.g.,
 MultipleInputs.addInputPath(job, new Path(args[1]),

TextInputFormat.class, Mapper1.class);

MultipleInputs.addInputPath(job, new Path(args[2]),
TextInputFormat.class, Mapper2.class);

 Specify two input paths (args[1] and args[2])
 The data of both paths are read by using the

TextInputFormat class
 Mapper1 is the class used to manage the input key-value

pairs associated with the first path
 Mapper2 is the class used to manage the input key-value

pairs associated with the second path

6

7

 In some applications it could be useful to store the
output key-value pairs of a MapReduce application in
different files
 Each file contains a specific subset of the emitted key-

value pairs (based on some rules)
▪ Usually this approach is useful for splitting and filtering operations

 Each file name has a prefix that is used to specify the
“content” of the file

 All the files are stored in one single output directory
 i.e., there are no multiple output directories, but only

multiple output files with different prefixes

8

 Hadoop allows specifying the prefix of the
output files
 The standard prefix is “part-” (see the content of

the output directory of some of the previous
applications)

 The MultipleOutputs class is used to specify the
prefixes of the output files
▪ One different prefix for each “type” of output file

▪ There will be one output file of each type for each
reducer (for each mapper for map-only jobs)

9

 Use the method MultipleOutputs.addNamedOutput
multiple times in the Driver to specify the prefixes of
the output files

 The method has 4 parameter
 The job object

 The “name/prefix” of MultipleOutputs

 The OutputFormat class

 The key output data type class

 The value output data type class
 Call this method one time for each “output file type”

10

 E.g.,
 MultipleOutputs.addNamedOutput(job, "hightemp",

TextOutputFormat.class, Text.class, NullWritable.class);

 MultipleOutputs.addNamedOutput(job, "normaltemp",

TextOutputFormat.class, Text.class, NullWritable.class);

 This example defines two types of output files
 The first type of output files while have the prefix

“hightemp”

 The second type of output files while have the prefix
“normaltemp”

11

 Define a private MultipleOutputs variable in the
mapper if the job is a map-only job (in the
reducer otherwise)
 E.g.,

▪ private MultipleOutputs<Text, NullWritable> mos = null;

 Create an instance of the MultipleOutputs class
in the setup method of the mapper (or in the
reducer)
 E.g.,

▪ mos = new MultipleOutputs<Text, NullWritable>(context);

 12

 Use the write method of the MultipleOutputs
object in the map method (or in the reduce
method) to write the key-value pairs in the
file of interest
 E.g.,

▪ mos.write("hightemp", key, value);
▪ This example writes the current key-value pair in a file with the

prefix “hightemp-”

▪ mos.write(“normaltemp", key, value);
▪ This example writes the current key-value pair in a file with the

prefix “normaltemp-”

13

 Close the MultipleOutputs object in the
cleanup method of the mapper (or of the
reducer)

 E.g.,

▪ mos.close();

14

15

 Some applications need to share and cache
(small) read-only files to perform efficiently their
task

 These files should be accessible by all nodes of
the cluster in an efficient way
 Hence a copy of the shared/cached (HDFS) files

should be available locally in all nodes used to run the
application

 DistributedCache is a facility provided by the
Hadoop-based MapReduce framework to cache
files
 E.g., text, archives, jars needed by applications

16

17

Server 1 Server 2

Disk Disk

Server N-1 Server N

…

HDFS hdfs://path/
filename

Disk Disk Disk

Mapper
Instance #1

Mapper
Instance #2

Mapper
Instance #3

Mapper
Instance #M-1

Mapper
Instance #M

Disk

Disk Disk

18

Server 1 Server 2

Disk Disk

Server N-1 Server N

…

HDFS hdfs://path/
filename

Disk

Local folder
distributed

cache/filename

Disk

Local folder
distributed

cache/filename

Local folder
distributed

cache/filename

Mapper
Instance #1

Mapper
Instance #2

Mapper
Instance #3

Mapper
Instance #M-1

Mapper
Instance #M

Disk Disk

Disk Disk

19

HDFS file(s) to be shared by means
of the distributed cache

Server 1 Server 2

Disk Disk

Server N-1 Server N

…

HDFS hdfs://path/
filename

Disk

Local folder
distributed

cache/filename

Disk

Local folder
distributed

cache/filename

Local folder
distributed

cache/filename

Mapper
Instance #1

Mapper
Instance #2

Mapper
Instance #3

Mapper
Instance #M-1

Mapper
Instance #M

Disk Disk

Disk Disk

Local folder
distributed

cache/filename

Mapper
Instance #M-1

Mapper
Instance #M

Disk Disk

Disk Disk

20

Server 1 Server 2

Disk Disk

Server N-1 Server N

…

HDFS hdfs://path/
filename

Disk

Local folder
distributed

cache/filename

Disk

Local folder
distributed

cache/filename

Mapper
Instance #1

Mapper
Instance #2

Mapper
Instance #3

Local copies of the file(s) shared by
means of the distributed cache

Local folder
distributed

cache/filename

Mapper
Instance #M-1

Mapper
Instance #M

Disk Disk

Disk Disk

21

Server 1 Server 2

Disk Disk

Server N-1 Server N

…

HDFS hdfs://path/
filename

Disk

Local folder
distributed

cache/filename

Disk

Local folder
distributed

cache/filename

Mapper
Instance #1

Mapper
Instance #2

Mapper
Instance #3

A local copy of the file(s) shared by means of the distributed cache is created only in
the servers running the application that uses the shared file(s)

 In the Driver of the application, the set of
shared/cached files are specified
 By using the job.addCacheFile(path) method

 During the initialization of the job, Hadoop
creates a “local copy” of the shared/cached files
in all nodes that are used to execute some tasks
(mappers or reducers) of the job (i.e., of the
running application)

 The shared/cache file is read by the mapper (or
the reducer), usually in its setup method
 Since the shared/cached file is available locally in the

used nodes/servers, its content can be read efficiently

22

 The efficiency of the distributed cache depends on
the number of multiple mappers (or reducers)
running on the same node/server
 For each node a local copy of the file is copied during the

initialization of the job
 The local copy of the file is used by all mappers (reducers)

running on the same node/server
 Without the distributed cache, each mapper

(reducer) should read, in the setup method, the
shared HDFS file
 Hence, more time is needed because reading data from

HDFS is more inefficient than reading data from the local
file system of the node running the mappers (reducers)

23

Structure

24

 public int run(String[] args) throws Exception {

 …..

 // Add the shared/cached HDFS file in the
 // distributed cache
 job.addCacheFile(new Path("hdfs

path/filename").toUri());

 ……
}

25

 protected void setup(Context context) throws IOException,

InterruptedException {

 ………
 String line;

 // Retrieve the (original) paths of the distributed files
 URI[] urisCachedFiles = context.getCacheFiles();

26

 // Read the content of the cached file and process it.
 // In this example the content of the first shared file is opened.
 BufferedReader file = new BufferedReader(new FileReader(
 new File(new Path(urisCachedFiles[0].getPath()).getName())));

 // Iterate over the lines of the file
 while ((line = file.readLine()) != null) {
 // process the current line
 …..
 }

 file.close();
 }

27

 // Read the content of the cached file and process it.
 // In this example the content of the first shared file is opened.
 BufferedReader file = new BufferedReader(new FileReader(
 new File(new Path(urisCachedFiles[0].getPath()).getName())));

 // Iterate over the lines of the file
 while ((line = file.readLine()) != null) {
 // process the current line
 …..
 }

 file.close();
 }

28

Retrieve the name of the file.
The shared file is stored in the
root of a local temporary folder
(one for each server that is used to
run the application) associated
with the distributed cache.
The path of the original folder is
different from the one used to
store the local copy of the shared
file.

