DoubleRDDs and basic
statistical measures

DoubleRDDs

Spark provides specific actions for a specific

numerical type of RDD called

JavaDoubleRDD

JavaDoubleRDD is an RDD of doubles
However, it is different from JavaRDD<Double>
Even if they contains the same type of objects

On JavaDoubleRDDs, the following actions

are also available

sum(), mean(), stdev(), variance(), max(), min(),..

DoubleRDDs

A generic JavaRDD<T> containing elements
of type T can be transformed in a
JavaDoubleRDD by using two specific
transformations

mapToDouble
flatMapToDouble
mapToDouble and flatMapToDouble operate

similarly to map and flatMap, but they return
a JavaDoubleRDD

DoubleRDDs

JavaDoubleRDDs can be created also by
using the JavaDoubleRDD
parallelizeDoubles(java.util.List<Double>
list) method of the JavaSparkContext class

MapToDouble transformation

MapToDouble transformation

Goal

The mapToDouble transformation is used to
create a new DoubleRDD by applying a function
on each element of the “input” RDD

The new RDD contains one element y for each
element x of the “input” RDD

The value of y is obtained by applying a user
defined function f on x

y=1(x)
The data type of y is always double

MapToDouble transformation

Method

The mapToDouble transformation is based on the
JavaDoubleRDD

mapToDouble(DoubleFunction<T>) method of the
JavaRDD<T> class

An object of a class implementing the
DoubleFunction<T> interface is passed to the
mapToDouble method
The public double call(T element) method of the
DoubleFunction<T> interface must be implemented

It contains the code that is applied on each element of the “input”
RDD to create the double values of the returned DoubleRDD

For each element of the “input” RDD one single double is returned
by the call method

MapToDouble transformation:
Example

Create an RDD from a textual file containing
the surnames of a list of users

Each line of the file contains one surname
Create a new DoubleRDD containing the
lengths of the input surnames

MapToDouble transformation:
Example

// Read the content of the input textual file
JavaRDD<String>surnamesRDD = sc.textFile("surnames.txt");

/| Compute the lengths of the surnames
JavaDoubleRDD lenghtsDoubleRDD =
surnamesRDD.mapToDouble(surname -> (double)surname.length());

FlatMapToDouble
transformation

FlatMapToDouble transformation

Goal

The flatMapToDouble transformation is used to
create a new RDD by applying a function f on each
element of the “input” RDD

The new RDD contains a list of elements obtained by
applying f on each element x of the “input” RDD

The function f applied on an element x of the “input”
RDD returns a list of double values [y]

[yl=f(x)
[y] can be the empty list

FlatMapToDouble transformation

The final result is the concatenation of the list of
values obtained by applying f over all the
elements of the “input” RDD

i.e., the final RDD contains the merge of the lists
obtained by applying f over all the elements of the input
RDD

The data type of y is always double

FlatMapToDouble transformation

Method

The flatMapToDouble transformation is based on the

JavaRDD<R> flatMapToDouble(FlatMapFunction<T, R>)
method of the JavaRDD<T> class

An object of a class implementing the FlatMapFunction<T,
R> interface is passed to the flatMap method
The public Iterable<Double> call(T element) method of the
DoubleFlatMapFunction<T> interface must be implemented

It contains the code that is applied on each element of the “input” RDD and
returns a list of Double elements included in the returned RDD

For each element of the “input” RDD a list of new elements is returned by
the call method

* The list can be empty

13

FlatMapToDouble transformation:
Example 1

Create an RDD from a textual file

Each line contains a sentence
Create a new DoubleRDD containing the
lengths of the words occurring in the input
textual document

FlatMapToDouble transformation:
Example 1

// Read the content of the input textual file
JavaRDD<String>sentencesRDD = sc.textFile("sentences.txt");

/| Create a JavaDoubleRDD with the lengths of words occurring in
/[sentencesRDD
JavaDoubleRDD wordLenghtsDoubleRDD =
sentencesRDD.flatMapToDouble(sentence ->
{
String[]words=sentence.split("");
/| Compute the length of each word
ArrayList<Double>lengths=new ArrayList<Double>();
for (String word: words) §
lengths.add(new Double(word.length()));
}

return lengths.iterator();

13}

15

DoubleRDD actions

DoubleRDD actions

The following actions are applicable only on
JavaDoubleRDDs and return a Double value
sum(), mean(), stdev(), variance(), max(), min()

All the examples reported in the following
tables are applied on inputRDD thatis a
DoubleRDD containing the following
elements (i.e., values)

11.5, 3.5, 2.0}

DoubleRDD actions: Summary

Double sum()

Double mean()

Double stdev()

Double variance()

Double max()

Double min()

Return the sum over the
values of the inputRDD

Return the mean value

Return the standard
deviation computed over the
values of the inputRDD

Return the variance
computed over the values of
the inputRDD

Return the maximum value

Return the minimum value

inputRDD.sum()

inputRDD.mean()
inputRDD.stdev()

inputRDD.
variance()

inputRDD.max()
inputRDD.min()

7.0

2.3333
0.8498

0.7223

3-5

1.5

18

DoubleRDD actions: example

Create a DoubleRDD containing the following
values

{1.5, 3.5, 2.0}
Print on the standard output the following
statistics

sum, mean, standard deviation, variance,
maximum value, and minimum value

DoubleRDD actions: example

/[Create alocal list of Doubles
List<Double> inputList = Arrays.asList(1.5, 3.5, 2.0);

/| Build a DoubleRDD from the local list
JavaDoubleRDD distList = sc.parallelizeDoubles(inputList);

/| Compute the statistics and print them on the standard output
System.out.printIn("sum: "+distList.sum());
System.out.printIn("mean: "+distList.mean());
System.out.printIn(“stdev: "+distList.stdev());
System.out.printIn("variance: "+distList.variance());
System.out.printIn("max: "+distList.max());
System.out.printIn("min: “+distList.min());

20

