Data preprocessing

Data Base and Data Mining Group of Politecnico di Torino

Elena Baralis and <u>Tania Cerquitelli</u> Politecnico di Torino

Data set types

Record

- Tables
- Document Data
- Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Tabular Data

A collection of records

 Each record is characterized by a fixed set of attributes
 Tid Refund Marital Taxable

Tid	R e fu n d	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	Νo	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	Νο	Single	90K	Yes	

Document Data

Each document becomes a `term' vector,

- each term is a component (attribute) of the vector,
- the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	ת <u>א</u>	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Item s
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Sequences of transactions

An element of the sequence

Attribute types

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate Data Objects
- Estimate Missing Values
- Ignore the Missing Value During Analysis
- Replace with all possible values (weighted by their probabilities)

Important Characteristics of Structured Data

- Dimensionality
 - Curse of Dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc
- More "stable" data
 - Aggregated data tends to have less variability

Data reduction

- It generates a reduced representation of the dataset. This representation is smaller in volume, but it can provide similar analytical results
 - sampling
 - It reduces the cardinality of the set
 - feature selection
 - It reduces the number of attributes
 - discretization
 - It reduces the cardinality of the attribute domain

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population

Sampling with replacement

- Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Dimensionality Reduction

Purpose:

- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Discretization

- It splits the domain of a continuous attribute in a set of intervals
 - It reduces the cardinality of the attribute domain
- Techniques
 - N intervals with the same width $W = (v_{max} v_{min})/N$
 - Easy to implement
 - It can be badly affected by outliers and sparse data
 - Incremental approach
 - N intervals with (approximately) the same cardinality
 - It better fits sparse data and outliers
 - Non incremental approach
 - clustering
 - It well fits sparse data and outliers

Discretization

Normalization

It is a type of data transformation

- The values of an attribute are scaled so as to fall within a small specified range, typically (-1,+1) or (0,+1)
- Techniques
 - min-max normalization

 $v' = \frac{v - \min_{A}}{(new _ max_{A} - new _ min_{A}) + new _ min_{A}}$ $max_{A} - min_{A}$

z-score normalization $v' = \frac{v - mean}{v'}$

stand _ dev A

decimal scaling

 $v' = \frac{v}{10^{j}}$ j is the smallest integer such that max(|v'|) < 1

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

Proximity refers to a similarity or dissimilarity

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects *p* and *q*.

Standardization is necessary, if scales differ.

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - *s*(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities
 M₀₁ = the number of attributes where p was 0 and q was 1
 M₁₀ = the number of attributes where p was 1 and q was 0
 M₀₀ = the number of attributes where p was 0 and q was 0
 M₁₁ = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients
 SMC = number of matches / number of attributes
 = (M₁₁ + M₀₀) / (M₀₁ + M₁₀ + M₁₁ + M₀₀)
 - J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

p = 10000000000q = 0000001001

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1) $M_{10} = 1$ (the number of attributes where p was 1 and q was 0) $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

If d₁ and d₂ are two document vectors, then
cos(d₁, d₂) = (d₁ • d₂) / ||d₁|| ||d₂|| ,
where • indicates vector dot product and || d || is the length of vector d.

Example:

 $d_1 = 3205000200$ $d_2 = 100000102$

 $d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$ $||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$

 $||d_2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)$ **0.5** = (6) **0.5** = 2.245

 $\cos(d_{1'}, d_2) = .3150$

Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0, 1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

 $\delta_k = \begin{cases} 0 & \text{if the } k^{th} \text{ attribute is a binary asymmetric attribute and both objects have} \\ & a \text{ value of } 0, \text{ or if one of the objects has a missing values for the } k^{th} \text{ attribute} \\ 1 & \text{otherwise} \end{cases}$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^n \delta_k s_k}{\sum_{k=1}^n \delta_k}$$

Combining Weighted Similarities

May not want to treat all attributes the same.

Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = rac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^{n} w_k |p_k - q_k|^r \right)^{1/r}$$