Association Rules Fundamentals

Elena Baralis, <u>Tania Cerquitelli</u>, Silvia Chiusano Politecnico di Torino

Association rules

Objective

extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Association rule

diapers \Rightarrow beer

- 2% of transactions contains both items
- 30% of transactions containing diapers also contains beer

Association rule mining

A collection of transactions is given

- a transaction is a set of items
- items in a transaction are not ordered
- Association rule

A, B \Rightarrow C

- A, B = items in the rule body
- C = item in the rule head
- The \Rightarrow means co-occurrence
 - not causality
- Example
 - coke, diapers \Rightarrow milk

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Transactional formats

- Association rule extraction is an *exploratory technique* that can be applied to any data type
- A transaction can be any set of items
 - Market basket data
 - Textual data
 - Structured data
 - • •

Transactional formats

- Textual data
 - A document is a transaction

- Words in a document are items in the transaction
- Data example
 - Doc1: algorithm analysis customer data mining relationship
 - Doc2: customer data management relationship
 - Doc3: analysis customer data mining relationship social
- Rule example

customer, relationship \Rightarrow data, mining

Transactional formats

- Structured data
 - A table row is a transaction
 - Pairs (attribute, value) are items in the transaction
- Data example

Transaction

Refund=no, MaritalStaus=married, TaxableIncome<80K, Cheat=No

Rule example

Refund=No, MaritalStatus=Married \Rightarrow Cheat = No

Definitions

- *Itemset* is a set including one or more items
 - Example: {Beer, Diapers}
- *k-itemset* is an itemset that contains k items
- Support count (#) is the frequency of occurrence of an itemset
 - Example: #{Beer,Diapers} = 2
- Support is the fraction of transactions that contain an itemset
 - Example: sup({Beer, Diapers}) = 2/5
- Frequent itemset is an itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Rule quality metrics

• Given the association rule

 $\mathsf{A} \Rightarrow \mathsf{B}$

- A, B are itemsets
- Support is the fraction of transactions containing both A and B

|T| is the cardinality of the transactional database

- a priori probability of itemset AB
- rule frequency in the database
- *Confidence* is the frequency of B in transactions containing A

sup(A,B) sup(A)

<u>#{A,B}</u>

- conditional probability of finding B having found A
- "strength" of the " \Rightarrow "

- From itemset {Milk, Diapers} the following rules may be derived
- Rule: Milk \Rightarrow Diapers
 - support

sup=#{Milk,Diapers}/#trans. =3/5=60%

confidence

conf=#{Milk,Diapers}/#{Milk}=3/4=75%

- Rule: Diapers \Rightarrow Milk
 - same support

s=60%

 confidence conf=#{Milk,Diapers}/#{Diapers}=3/3 =100%

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Association rule extraction

- Given a set of transactions T, association rule mining is the extraction of the rules satisfying the constraints
 - support \geq *minsup* threshold
 - confidence \geq *minconf* threshold
- The result is
 - complete (*all* rules satisfying both constraints)
 - correct (*only* the rules satisfying both constraints)
- May add other more complex constraints

Association rule extraction

Brute-force approach

- enumerate all possible permutations (i.e., association rules)
- compute support and confidence for each rule
- prune the rules that do not satisfy the *minsup* and *minconf* constraints
- Computationally unfeasible
- Given an itemset, the extraction process may be split
 - first generate frequent itemsets
 - next generate rules from each frequent itemset

Example

Itemset

{Milk, Diapers} sup=60%

Rules

 $\begin{array}{l} \text{Milk} \Rightarrow \text{Diapers (conf=75\%)} \\ \text{Diapers} \Rightarrow \text{Milk (conf=100\%)} \end{array}$

Association rule extraction

(1) Extraction of frequent itemsets

- many different techniques
 - Ievel-wise approaches (Apriori, ...)
 - approaches without candidate generation (FP-growth, ...)
 - other approaches
- most computationally expensive step
 - Imit extraction time by means of support threshold
- (2) Extraction of association rules
 - generation of all possible binary partitioning of each frequent itemset
 - possibly enforcing a confidence threshold

Frequent Itemset Generation

Brute-force approach

- each itemset in the lattice is a *candidate* frequent itemset
- scan the database to count the support of each candidate
 - match each transaction against every candidate
- Complexity ~ $O(|T| 2^d w)$
 - IT is number of transactions
 - d is number of items
 - w is transaction length

Improving Efficiency

Reduce the number of candidates

- Prune the search space
 - complete set of candidates is 2^d
- Reduce the number of transactions
 - Prune transactions as the size of itemsets increases
 reduce |T|
- Reduce the number of comparisons
 - Equal to |T| 2^d
 - Use efficient data structures to store the candidates or transactions

"If an itemset is frequent, then all of its subsets must also be frequent"

- The support of an itemset can never exceed the support of any of its subsets
- It holds due to the antimonotone property of the support measure
 - Given two arbitrary itemsets A and B if A ⊆ B then sup(A) ≥ sup(B)
- It reduces the number of candidates

The Apriori Principle

Factors Affecting Performance

- Minimum support threshold
 - lower support threshold increases number of frequent itemsets
 - larger number of candidates
 - larger (max) length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases in dense data sets
 - may increase max length of frequent itemsets and traversals of hash tree
 - number of subsets in a transaction increases with its width

FP-growth Algorithm [Han00]

- Exploits a main memory compressed rappresentation of the database, the FP-tree
 - high compression for dense data distributions
 - less so for sparse data distributions
 - complete representation for frequent pattern mining
 enforces support constraint
- Frequent pattern mining by means of FP-growth
 - recursive visit of FP-tree
 - applies divide-and-conquer approach
 - decomposes mining task into smaller subtasks
- Only two database scans
 - count item supports + build FP-tree

Other approaches

- Many other approaches to frequent itemset extraction
 - some covered later
- May exploit a different database representation
 - represent the tidset of each item [Zak00]

Vertical Data Layout

Α	В	С	D	E
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Maximal vs Closed Itemsets

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Effect of Support Threshold

Selection of the appropriate *minsup* threshold is not obvious

- If *minsup* is too high
 - itemsets including rare but interesting items may be lost
 - example: pieces of jewellery (or other expensive products)
- If *minsup* is too low
 - it may become computationally very expensive
 - the number of frequent itemsets becomes very large

Interestingness Measures

A large number of pattern may be extracted

- rank patterns by their interestingness
- Objective measures
 - rank patterns based on statistics computed from data
 - initial framework [Agr94] only considered support and confidence
 - other statistical measures available
- Subjective measures
 - rank patterns according to user interpretation [Silb98]
 - interesting if it contradicts the expectation of a user
 - interesting if it is actionable

Confidence measure: always reliable?

5000 high school students are given

- 3750 eat cereals
- 3000 play basket
- 2000 eat cereals and play basket

Rule

play basket \Rightarrow eat cereals

$$sup = 40\%$$
, $conf = 66,7\%$

is misleading because eat cereals has sup 75% (>66,7%)

- Problem caused by high frequency of rule head
 - negative correlation

	basket	not basket	total
cereals	2000	1750	3750
not cereals	1000	250	1250
total	3000	2000	5000

- Statistical independence
 - Correlation = 1
- Positive correlation
 - Correlation > 1
- Negative correlation
 - Correlation < 1

Association rule

play basket \Rightarrow eat cereals

- has corr = 0.89
 - negative correlation
- but rule

play basket \Rightarrow not (eat cereals) has corr = 1,34

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j=1}^{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}{2-\max_{k}P(A_{j})-\max_{k}P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(\overline{A},\overline{B})P(\overline{AB}) - P(\overline{A},\overline{B})P(\overline{A},B)}{P(\overline{A},\overline{B})P(\overline{A},\overline{B}) + P(\overline{A},\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}}{\frac{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}}$
7	Mutual Information (M)	$\frac{\sum_i \sum_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
8	J-Measure (J)	$\max\Big(P(A,B)\log(\tfrac{P(B A)}{P(B)}) + P(A\overline{B})\log(\tfrac{P(\overline{B} A)}{P(\overline{B})}),$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
9	Gini index (G)	$\max \left(P(A) [P(B A)^{2} + P(\overline{B} A)^{2}] + P(\overline{A}) [P(B \overline{A})^{2} + P(\overline{B} \overline{A})^{2} \right)$
		$-P(B)^2 - P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	$\operatorname{Piatetsky-Shapiro's}\left(PS ight)$	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

-

