
Data Science Lab
Lab #2

Politecnico di Torino

Introduction
The purpose of this laboratory is to make you practice with the data preparation process. More specifically,
you will tackle the task with tabular and textual input data, learning how to handle anomalies in the data,
missing values and more.

1 Preliminary steps

1.1 Matplotlib availability
In order to complete some of the optional exercises you will need the matplotlib plotting library. You
can read more about it on its official documentation. You can check if it is already installed by running
import matplotlib either in Jupyter or iPython.

Among its numerous functionalities, you will use the histogram plotting function in this laboratories.
An histogram is a simple representation of the distribution of numerical data. It presents the binned range
of values on x-axis (i.e. a series of intervals in which data is divided) and the frequency of each bin on the
y-axis. You can read more about it on Wikipedia.

Here it is a short python script on how to use matplotlib to plot the histogram of values contained in
a list. Figure 1 shows an example of the resulting chart.

from random import gauss
import matplotlib.pyplot as plt

l = [gauss(0, 1) for _ in range(500)]
plt.hist(l)
plt.title('Gaussian distribution (mu=0, sigma=1)')
plt.show()

Note that, if you are using Jupyter Notebook, you should add the following line, after importing mat-
plotlib:

%matplotlib inline

1.2 Datasets download
For this lab, two different datasets will be used. Here, you will learn more about them and how to retrieve
them.

Global Land Temperature

The Global Land Temperature (GLT) dataset is a large collection of measurements actively maintained
by Berkeley Earth. It contains the raw source data measured with stations all around the globe, plus an
intermediate format and several formatted output files. Data span from ∼1750 up to recent days with

1

https://matplotlib.org
https://en.wikipedia.org/wiki/Histogram

3 2 1 0 1 2
0

20

40

60

80

100

Gaussian distribution (mu=0, sigma=1)

Figure 1: A gaussian distribution plotted with Matplotlib

monthly and daily availability. Measurements are provided by hemispheres, states, countries, cities and
more. You can read more about the dataset at the Berkeley Earth website.

For the purpose of this laboratory you will work on a modified, smaller but dirtier, version of the
original GLT dataset, to stress the importance of data preprocessing. More specifically, this didactic version
contains the formatted output files of the major cities of the globe with monthly granularity. For the sake of
simplicity, the analysis will range between almost two centuries (i.e. between the years 1817 and 2012).

The dataset is composed of ∼200k rows corresponding to the measurements taken the first day of the
month in a given city. Each measurement is then described by 7 values:

• Date, when the measurement was taken

• AverageTemperature

• AverageTemperatureUncertainty

• City, from which the measurement was taken

• Country

• Latitude

• Longitude

The dataset is available in CSV format. You can find it at the following URL

https://raw.githubusercontent.com/dbdmg/data-science-lab/master/datasets/GLT_filtered.csv

Info: even though laboratories do not have a strict order, we consider what you have accomplished
during the previous ones to be part of your experience. At this point you should be able to download
the file and parse it with the csv python module.

i

IMDb reviews

Internet Movie Database (IMDb) is a popular online platform that gathers many information related to
multimed like movies, tv shows, video games and many more. You can navigate to its website to explore
the huge amount of updated content it offers. The only difference with the previously used CSV datasets
is that, in this one, the first row of the file contains a “header” (i.e. the name of each column). You should
skip the first row and start reading from the second one on.

2

http://berkeleyearth.org/data/
https://www.imdb.com/

IMDb has soon become a rich data source for the scientific community. Among the others, people’s
reviews are one of the most important types of data that can be retrieved from the platform. The collec-
tion of reviews on a specific movie, for example, contains intrinsic information about its approval rating.
Therefore, a considerable amount of recent science works has addressed the identification of the sentiment
within textual reviews and surveys. In the context of movie reviews, the sentiment analysis would seek to
discover if the reviewer liked the movie or not based on the content of the text, with the sentiment being
represented as numerical value (e.g. a score between 1 and 10) or a binary one (e.g Positive or Negative).
Wikipedia provides a general overview on the topic of sentiment analysis.

During this laboratory you will work on the dataset collected and used by Maas et al. 2011. We will
focus on a smaller portion of the whole dataset, known as the training data (you will learn more on
training and test datasets). It contains 25, 000 user reviews collected from IMDb for different movies.
Since each review has also a numerical score between 1 and 10, the authors considered the ones with
a score lower than 4 to have a negative sentiment, while the ones with a score higher than 6 to have a
positive sentiment. The dataset includes 12, 500 positive and 12, 500 negative reviews. For the purpose of
this laboratory, reviews, which originally came in different files, have been organized in a single CSV file.
Each line of the file refers to a single review and has two fields:

1. the textual comment;

Info: you do not have to handle commas inside the text. Each comment comes surrounded by
the ¨ character which helps the csv module to properly split the fields for you.

i

2. a binary value indicating either the positive or negative sentiment, represented respectively by a ’1’
and a ’0’.

Here it is a pseudo-representation of the first lines of your dataset:

review,label
<review_text>,1
<review_text>,1
<review_text>,0

Warning: the first line of the file contains the header, which describes the schema of your dataset. It
is commonplace to store data in this format.

!

You can download the dataset from the following link

https://raw.githubusercontent.com/dbdmg/data-science-lab/master/datasets/aclimdb_reviews_train.txt

2 Exercises
Note that exercises marked with a (*) are optional, you should focus on completing the other ones first.

2.1 Data preprocessing on Global Land Temperature
The main goal of this exercise is to learn how to clean a real-world dataset searching for anomalies, such
as missing values or outliers, in its data.

Prerequisites. There are many ways to handle missing values. One can decide to delete a row of the
dataset based on whether a missing value is present or not. This strategy can be adopted when the dataset
is large and the information loss does not affect the overall distribution. Another common solution is to fill
every missing value. If data has not a specific order, they can be replaced with the mean (or the median)
of the involved attribute. Temporal data, instead, allow to replace missing values with values of adjacent
rows, e.g. by averaging them. Clearly, this technique is possible if the data type allows to compute the
mean.

3

https://en.wikipedia.org/wiki/Sentiment_analysis

1. Load the Global Land Temperature dataset as a list of lists. Before starting, take a moment to bet-
ter inspect the attributes you are going to work on. How many of them are nominal, how many
continuous or discrete?

2. Analyze the attribute AverageTemperature, which contains missing values. Fill any gap with the
arithmetic mean among the closest antecedent and the closest successive measurements in time,
taken in the same city. Assume the following rules for edge cases:

(a) it can happen that a missing value does not have a preceding (or successive) measurement.
This happens when the missing value is the first (or last) value of the dataset. If this is the
case, consider the missing value to be preceded (or followed) by a 0, then compute the mean
accordingly.

original_list = ['', 5, 6, '']
step_1 = [2.5, 5, 6, ''] # (0 + 5) / 2
step_2 = [2.5, 5, 6, 3] # (6 + 0) / 2

(b) if there are consecutive missing values, just compute them in temporal order and use the newly
inserted values to evaluate the following ones. Here it is an example with a simple list where
both (a) and (b) rules have been applied:

original_list = ['', '', 24, 28.9]
step_1 = [12, '', 24, 28.9] # (0 + 24) / 2
step_2 = [12, 18, 24, 28.9] # (12 + 24) / 2

3. Define a function that, given the name of a city and an integer N > 0, prints:

(a) the top N hottest measurements;
(b) the top N coldest measurements.

4. (*) Let’s search for other anomalies in data distribution with the help of matplotlib. Plot the distri-
bution of the average land temperatures for Rome and Bangkok using the aforementioned histogram
plotting function.

Info: calling the plt.hist() method twice will draw the second histogram onto the canvas
generated by the first call.

i

As you can see, Rome and Bangkok have very different temperature distributions, but this seems
plausible. What it looks strange is the large difference in their temperatures’ magnitude. Is it possible
that all sensors from Bangkok stations, along the entire time-span, were faulty? Could they were
configured to use another representation of the temperature measurement? Can you figure out a
data cleaning step to solve it?

Before continuing, try to answer to these questions.

4

5. (*) One might think that Bangkok sensor provide temperature samples in degrees Fahrenheit while
the ones located in Rome use the Celsius notation, which is the common representation in the whole
dataset. Write a function to transform Fahrenheit measurements back to Celsius, apply it to your
data and plot the two distribution again.

Info: remember that the mapping function from Celsius to Fahrenheit is the following

TF = 1.8 · TC + 32

i

5

2.2 Textual data preparation on IMDB reviews
This exercise is meant to get you acquainted with the preprocessing of textual data. You can find useful
information about Information Retrieval theory in the book "Introduction to Information Retrieval" (Man-
ning, Raghavan, and Schütze 2008) also available at Introduction to Information Retrieval Stanford web
page.

Prerequisites. Textual data (like that from IMDb reviews) comes without a specific structure. Even when
the text itself is correctly formatted, with no syntax error, misspelled words, misplaced punctuation or any
other possible flaw generated by a human typing on a keyboard (which is, in practice, never the case),
many data analytics and machine learning algorithms cannot operate on the bare textual representation.
The metrics you have already encountered (e.g. arithmetic mean and standard deviation) do not make
sense in this context. Nonetheless, many practical tasks would benefit from mathematical computations
on textual documents. In all these cases, the data preprocessing step becomes crucial.

Along this exercise you will focus on one of them. Let’s imagine the IMDb platform wants an automatic
procedure to assign a numerical value to a user review, based of the content of the text, to identify the rate
he or she would have given to the movie. Simplifying the task, you might want to assign a label, Positive
or Negative, to identify the overall sentiment, i.e. whether the user liked the movie or not.
To do so, you will implement the TF-IDF weighting scheme on IMDb reviews. Then, you will compute
the distance between a review whose sentiment is unknown and the two sets of positive and negative
comments, assigning the sentiment of the closest one among the two.

1. Load the IMDb dataset as a list of lists.

2. Apply the tokenization function listed below to your reviews. Please refer to the function’s docstring 1

for the input and output parameters. The tokenization procedure splits each comment in tokens (i.e.
separate words).

import string

def tokenize(docs):
"""Compute the tokens for each document.

Input: a list of strings. Each item is a document to tokenize.
Output: a list of lists. Each item is a list containing the tokens of the
relative document.
"""
tokens = []

for doc in docs:
for punct in string.punctuation:

doc = doc.replace(punct, " ")
split_doc = [token.lower() for token in doc.split(" ") if token]
tokens.append(split_doc)

return tokens

3. The next step requires the computation of the term frequency (TF) of each token within its respective
document. Although there exist different techniques to evaluate the frequency, we will now assume
that the TF of a token t in a document d is equal to the number of occurrences of t in d. Compute
the TF for all your reviews.

1Python docstrings are string literals that are not processed by the interpreter. Their main purpose is to describe how a piece of
the project works (e.g. a module, a function, a class, etc.) in a concise way. Like many other Python stuff, you can find a further
description on the official documentation.

6

https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://www.python.org/dev/peps/pep-0257/

Info: if you decide to count the frequency of every term in the collection of reviews for each
document (i.e. not only the terms contained in that document), you will build what is known
in literature as Bag-of-Words. However, since many terms are not present in all documents, you
will end up with many values equal to 0. This representation is a sparse matrix. Storing many
0-valued cells like in sparse matrices is quite inefficient. As a consequence, you should pay
attention to the choice of your data structure.

i

Here it is an example of TF on a toy sentence:

tokens = ['with', 'great', 'power', 'comes', 'great', 'responsibility']
TF(tokens) = {'with': 1, 'great': 2, 'power': 1, 'comes': 1, 'responsibility': 1}

4. We will now compute the inverse document frequency (IDF). While the TF gives an idea of the weight
of a token within a document, the IDF is used to find its significance among the entire collection of
documents (i.e. your reviews). One possible way of computing it is:

IDFt = log
N

DFt

where N is the number of documents and DFt is the document frequency of a token, i.e. the number
of documents in which t appears at least once. As you can see, IDFt ∈ [0, logN]. Furthermore,
a low value means that the token appears in the majority of the documents, hence its presence is
not relevant to characterize any subset of them, whereas an high value indicates relevance for a few
documents.

(a) Compute the DF for all of your tokens;
(b) Compute the IDF for all of your tokens;
(c) Try to sort the IDF values in ascending order. Which tokens (i.e. words) came to the top? Can

you figure out why?

5. Compute the TF -IDF . Combine the definitions of term frequency (TF) and inverse document fre-
quency (IDF), to produce a composite weight for each term in each document. The TF -IDF weight-
ing scheme assigns to a term t a weight in the document d given by:

TF -IDFt,d = TFt,d × IDFt (1)

In other words, TF -IDFt,d assigns to term t a weight in document d that is

• high when t occurs many times within a small number of documents;
• low when the term occurs fewer times in a document, or occurs in many documents (thus

offering a less pronounced relevance signal);
• lowest when the term occurs in virtually all documents.

For dictionary terms that do not occur in a document, the weight is zero.
The suggested output structure is a list of dictionaries. Each dictionary represents a document and
contains its tokens as key and weights as values:

TF_IDF = [{ "token_1": weight_1, ... "token_N": weight_N}, { ... }, ...]

6. (*) Sentiment analysis. Given a document, identify if it belongs to positive or negative comments
calculating the similarity between the comments in the two groups.
How do we quantify the similarity between two documents exploiting TF -IDF vector representa-
tion?
A first attempt might consider the magnitude of the vector difference between two document vec-
tors. This measure suffers from a drawback: two documents with very similar content can have a

7

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Sparse_matrix

significant vector difference simply because one is much longer than the other. Thus the relative dis-
tributions of terms may be identical in the two documents, but the absolute term frequencies of one
may be far larger. To compensate for the effect of document length, the standard way of quantifying
the similarity between two documents d1 and d2 is to compute the cosine similarity of their vector
representations ~V (d1) and ~V (d2):

cos_sim(d1, d2) =
~V (d1) ∗ ~V (d2)

|~V (d1)||~V (d2)|
(2)

To solve this simple task of sentiment analysis you have to:

(a) Take the vector representation of the first document in the collection. We will call it the test
document.

(b) Identify the positive and negative comments and separate them into two groups.
(c) Compute the cosine similarity between the test document and all the other positive and negative

comments separately.
Given that the vector representation for a document ~V (dn) is the dictionary of tokens with their
weights, use the following functions to compute the cosine similarity:

def norm(d):
"""Compute the L2-norm of a vector representation."""
return sum([tf_idf**2 for t, tf_idf in d.items()])**.5

def dot_product(d1, d2):
"""Compute the dot product between two vector representations."""
word_set = set(list(d1.keys()) + list(d2.keys()))
return sum([(d1.get(d, 0.0) * d2.get(d, 0.0)) for d in word_set])

def cosine_similarity(d1, d2):
"""
Compute the cosine similarity between documents d1 and d2.

Input: two dictionaries representing the TF-IDF vectors for documents
d1 and d2.
Output: the cosine similarity.
"""
return dot_product(d1, d2) / (norm(d1) * norm(d2))

(d) Assign the label (positive or negative) to the selected document analysing the mean similarity
with respect to the group of positive comments and the mean similarity with respect to the
group of negative comments.

(e) Are you able to identify the correct group? Why?
(f) Repeat the previous steps with other documents. Do you think the TF -IDF pre-processing is

enough to perform a simple task of sentiment analysis?

References
[1] Andrew L. Maas et al. “Learning Word Vectors for Sentiment Analysis”. In: Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Port-
land, Oregon, USA: Association for Computational Linguistics, June 2011, pp. 142–150. url: http:
//www.aclweb.org/anthology/P11-1015.

[2] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Re-
trieval. New York, NY, USA: Cambridge University Press, 2008. isbn: 0521865719, 9780521865715.

8

https://en.wikipedia.org/wiki/Cosine_similarity
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

	Preliminary steps
	Matplotlib availability
	Datasets download

	Exercises
	Data preprocessing on Global Land Temperature
	Textual data preparation on IMDB reviews

