
Queries

Query 1

SELECT SUM(Price), dateYear, phoneRateType

FROM Facts F, TimeDim T, PhoneRate P

WHERE F.Id_time = T.Id_time and F.Id_phoneRate = P.Id_phoneRate

GROUP BY cube(phoneRateType, dateYear)

SELECT dateYear, phoneRateType, SUM(Price),

SUM(SUM(Price)) OVER (PARTITION BY phoneRateType), SUM(SUM(Price)) OVER

(PARTITION BY dateYear), SUM(SUM(Price)) OVER ()

FROM Facts F, TimeDim T, PhoneRate P

WHERE F.Id_time = T.Id_time and F.Id_phoneRate = P.Id_phoneRate

GROUP BY phoneRateType, dateYear

Query 2

SELECT DateMonth,DateYear, SUM(NumberOfCalls) as TotNumOfCalls, SUM(price) as

totalIncome, RANK() over (ORDER BY SUM(price) DESC) as RankIncome

FROM FACTS F, TIMEdim Te

WHERE F.id_time=Te.id_time

GROUP BY DateMonth,DateYear;

Query 3

SELECT DateMonth, SUM(NumberOfCalls) as TotNumOfCalls,

RANK() over (ORDER BY SUM(NumberOfCalls) DESC) as RankNumOfCalls

FROM FACTS F, TIMEDIM Te

WHERE F.id_time=Te.id_time

AND DateYear=2003

GROUP BY DateMonth;

 Query 4

SELECT DayDate , SUM(Price), AVG(SUM(Price)) OVER (ORDER BY DayDate RANGE

BETWEEN INTERVAL '2' day preceding and current row) as avglast3days

FROM FACTS F, TIMEDIM Te

WHERE F.ID_time=Te.ID_time AND DateYear=2003 AND DateMonth= '7-2003'
GROUP BY DayDate ;

SELECT DayDate , SUM(Price),

 AVG(SUM(Price)) OVER (ORDER BY DayDate ROWS 2 preceding) as avglast3days

FROM FACTS F, TIMEDIM Te

WHERE F.ID_time=Te.ID_time AND DateYear=2003 AND DateMonth= '7-2003'

GROUP BY DayDate

ORDER BY DayDate;

Query 5

SELECT DateYear, DateMonth, SUM(Price) AS TOTINCOME,

SUM(SUM(PRICE)) OVER(PARTITION BY DateYear ORDER BY DateMonth ROWS UNBOUNDED

PRECEDING) AS CUMULATIVEINCOME

 FROM FACTS F, TIMEDIM Te

WHERE F.ID_time=Te.ID_time

GROUP BY DateMonth, DateYear;

Materialized views

The cardinality of all queries is at least one order of magnitude lower than those of the fact table.
Hence, for each query it may be potentially useful to create a materialized view.

Queries 2, 3, and 5 are pretty similar. To answer these queries efficiently we can create a single
materialized view, which is reported below.

create materialized view GROUPBYMonthYear

 build immediate

 refresh on demand

 --enable query rewrite

as

SELECT DateMonth, DateYear, SUM(NumberOfCalls) as NumCalls, SUM(Price) as

TotPrice

FROM FACTS F, TIMEDIM T

WHERE F.ID_time = T.ID_time

GROUP BY DateMonth, DateYear;

Queries using materialized view

Query 2

SELECT DateMonth, DateYear, NumCalls, TotPrice,

RANK() over (ORDER BY TotPrice DESC) as RankPrice

FROM GROUPBYMonthYear;

Explain plan

Query 3

SELECT DateMonth, NumCalls, RANK() over (ORDER BY NumCalls DESC) as RankCalls

FROM GROUPBYMonthYear

WHERE DateYear =2003;

Explain plan

Query 5

SELECT DateMonth, DateYear, TotPrice,

SUM(TotPrice) over (PARTITION BY DateYear ORDER BY DateMonth rows unbounded

preceding) as CumulativePrice

FROM GROUPBYMonthYear;

Explain plan

