
https://docs.mongodb.com/manual/core/aggregation-pipeline/

Rev.2

https://docs.mongodb.com/manual/core/aggregation-pipeline/

1

▪ Documents enter a multi-stage pipeline that transforms the documents of a
collection into an aggregated result

▪ Pipeline stages can appear multiple times in the pipeline
▪ exceptions $out, $merge, and $geoNear stages

▪ Pipeline expressions can only operate on the current document in the pipeline
and cannot refer to data from other documents: expression operations provide in-
memory transformation of documents (max 100 Mb of RAM per stage).

▪ Generally, expressions are stateless and are only evaluated when seen by the
aggregation process with one exception: accumulator expressions used in the
$group stage (e.g. totals, maximums, minimums, and related data).

▪ The aggregation pipeline provides an alternative tomap-reduce and may be the
preferred solution for aggregation tasks since MongoDB introduced the
$accumulator and $function aggregation operators starting in version 4.4

2

SQL MongoDB

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

LIMIT $limit

SUM $sum

COUNT $sum

3

▪ Aggregate functions can be applied to collections to group documents

db.collection.aggregate([<list of stages>])

▪ Common stages: $match, $group ..

▪ The aggregate function allows applying aggregating functions (e.g. sum, average)

▪ It can be combined with an initial definition of groups based on the grouping fields

4

▪ Considers all documents of people and

▪ sum the values of their age

▪ sum a set of ones (one for each document)

▪ The returned value is associated with a field called “mytotal” and a field “mycount”

db.people.aggregate([

{ $group: { _id: null,

mytotal: { $sum: "$age" },

mycount: { $sum: 1 }

}

}

])

5

▪ Considers all documents of people and computes

▪ sum of age

▪ average of age

db.people.aggregate([

{ $group: { _id: null,

myaverage: { $avg: "$age" },

mytotal: { $sum: "$age" }

}

}

])

6

▪ Counts the number of documents in people with status equal to “A”

db.people.aggregate([

{ $match: {status: "A"} } ,

{ $group: { _id: null,

count: { $sum: 1 }

}

}

])

7

▪ Creates one group of documents for each value of status and counts the number of
documents per group

▪ returns one value for each group containing the value of the grouping field and an integer
representing the number of documents

db.people.aggregate([

{ $group: { _id: "$status",

count: { $sum: 1 }

}

}

])

8

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}
])

MySQL clause MongoDB operator

GROUP BY aggregate($group)

Group field

Aggregation

function

9

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status
HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 }

} }
])

MySQL clause MongoDB operator

HAVING aggregate($group, $match) Group stage:

Specify the

aggregation field

and the

aggregation

function

Match Stage:

specify the

condition as in
HAVING

10

Stage Description

$addFields Adds new fields to documents. Reshapes each document by adding new

fields to output documents that will contain both the existing fields from the

input documents and the newly added fields.

$bucket Categorizes incoming documents into groups, called buckets, based on a

specified expression and bucket boundaries. On the contrary, $group creates

a “bucket” for each value of the group field.

$bucketAuto Categorizes incoming documents into a specific number of groups, called

buckets, based on a specified expression. Bucket boundaries are

automatically determined in an attempt to evenly distribute the documents

into the specified number of buckets.

$collStats Returns statistics regarding a collection or view (it must be the first stage)

$count Passes a document to the next stage that contains a count of the input

number of documents to the stage (same as $group+$project)

11

Stage Description

$facet Processes multiple aggregation pipelines within a single stage on the same

set of input documents. Enables the creation of multi-faceted aggregations

capable of characterizing data across multiple dimensions. Input documents

are passed to the $facet stage only once, without needing multiple retrieval.

$geoNear Returns an ordered stream of documents based on the proximity to a

geospatial point. The output documents include an additional distance field.

It must in the first stage only.

$graphLookup Performs a recursive search on a collection. To each output document, adds

a new array field that contains the traversal results of the recursive search for

that document.

12

▪ The $graphLookup operation recursively
matches on the reportsTo and name fields in
the employees collection, returning the
reporting hierarchy for each person.

▪ Returns a list of documents such as
{

"_id" : 5,

"name" : "Asya",

"reportsTo" : "Ron",

"reportingHierarchy" : [

{ "_id" : 1, "name" : "Dev" },

{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" },

{ "_id" : 3, "name" : "Ron", "reportsTo" : "Eliot" }

]

}

db.employees.aggregate([

{

$graphLookup: {

from: "employees",

startWith: "$reportsTo",

connectFromField: "reportsTo",

connectToField: "name",

as: "reportingHierarchy"

}

}

])

13

original

document

Stage Description

$group Groups input documents by a specified identifier expression and applies the

accumulator expression(s), if specified, to each group. Consumes all input

documents and outputs one document per each distinct group. The output

documents only contain the identifier field and, if specified, accumulated

fields.

$indexStats Returns statistics regarding the use of each index for the collection.

$limit Passes the first n documents unmodified to the pipeline where n is the

specified limit. For each input document, outputs either one document (for

the first n documents) or zero documents (after the first n documents).

$lookup Performs a join to another collection in the same database to filter in

documents from the “joined” collection for processing. To each input

document, the $lookup stage adds a new array field whose elements are the

matching documents from the “joined” collection. The $lookup stage passes

these reshaped documents to the next stage.
14

Stage Description

$match Filters the document stream to allow only matching documents to pass

unmodified into the next pipeline stage. $match uses standard MongoDB

queries. For each input document, outputs either one document (a match)

or zero documents (no match).

$merge Writes the resulting documents of the aggregation pipeline to a

collection. The stage can incorporate (insert new documents, merge

documents, replace documents, keep existing documents, fail the

operation, process documents with a custom update pipeline) the results

into an output collection. To use the $merge stage, it must be the last

stage in the pipeline.

$out Writes the resulting documents of the aggregation pipeline to a

collection. To use the $out stage, it must be the last stage in the pipeline.

$project Reshapes each document in the stream, such as by adding new fields or

removing existing fields. For each input document, outputs one

document.
15

Stage Description

$sample Randomly selects the specified number of documents from its input.

$set Adds new fields to documents. Similar to $project, $set reshapes each

document in the stream; specifically, by adding new fields to output

documents that contain both the existing fields from the input documents and

the newly added fields. $set is an alias for $addFields stage. If the name of

the new field is the same as an existing field name (including _id), $set

overwrites the existing value of that field with the value of the specified

expression.

$skip Skips the first n documents where n is the specified skip number and passes

the remaining documents unmodified to the pipeline. For each input

document, outputs either zero documents (for the first n documents) or one

document (if after the first n documents).

$sort Reorders the document stream by a specified sort key. Only the order

changes; the documents remain unmodified. For each input document,

outputs one document. 16

Stage Description

$sortByCount Groups incoming documents based on the value of a specified expression,

then computes the count of documents in each distinct group.

$unset Removes/excludes fields from documents.

$unwind Deconstructs an array field from the input documents to output a document

for each element. Each output document replaces the array with an element

value. For each input document, outputs n documents where n is the number

of array elements and can be zero for an empty array.

17

18

Given the following collection of books

19

{_id:ObjectId("5fb29ae15b99900c3fa24292"),
title:”MongoDb Guide",
tag:[”mongodb”,”guide”,“database”],
n:100,
review_score:4.3,
price:[{v: 19.99, c: “€”, country: “IT”},

{v: 18, c: “£”, country:”UK”}],
author: {_id: 1,

name:”Mario”,
surname: “Rossi”}

},
{_id:ObjectId("5fb29b175b99900c3fa24293",
title:”Developing with Python",
tag:[”python”,”guide”,“programming”],
n:352,
review_score:4.6,
price:[{v: 24.99, c: “€”, country: “IT”},

{v: 19.49, c: “£”, country:”UK”}],
author: {_id: 2,

name:”John”,
surname: “Black”}

}, …

price currency

price value

number of pages

For each country, select the average price and the average
review_score.

The review score should be rounded down.

Show the first 20 results with a total number of books higher than 50.

20

21

db.book.aggregate([

{ $unwind: ”$price” } ,

])

Build a document

for each entry of

the price array

22

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : ["mongodb",
"guide", "database"], "n" : 100, "review_score" : 4.3, "price" : { "v" : 19.99, "c" : " € ", "country" : "IT" },
"author" : { "_id" : 1, "name" : "Mario", "surname" : "Rossi" } }

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : ["mongodb",
"guide", "database"], "n" : 100, "review_score" : 4.3, "price" : { "v" : 18, "c" : "£", "country" : "UK" },
"author" : { "_id" : 1, "name" : "Mario", "surname" : "Rossi" } }

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python ", "tag" : [
"python", "guide", "programming"], "n" : 352, "review_score" : 4.6, "price" : { "v" : 24.99, "c" : " € ",
"country" : "IT" }, "author" : { "_id" : 2, "name" : "John", "surname" : "Black" } }

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python ", "tag" : [
"python", "guide", "programming"], "n" : 352, "review_score" : 4.6, "price" : { "v" : 19.49, "c" : "£",
"country" : "UK" }, "author" : { "_id" : 2, "name" : "John", "surname" : "Black" } }

…

23

db.book.aggregate([

{ $unwind: ”$price” } ,

{ $group: { _id: ”$price.country”},

avg_price: { $avg: ” $price.v” ,

bookcount: {$sum:1},

review: {$avg: ” $review_score”}

}

}

])

dot notation to access the

value of the embedded

document fields

count the number

of books (number

of documents)

24

{ "_id" : "UK", "avg_price" : 18.75, "bookcount": 150, "review": 4.3}

{ "_id" : "IT", "avg_price" : 22.49, "bookcount": 132, "review": 3.9}

{ "_id" : "US", "avg_price" : 22.49, "bookcount": 49, "review": 4.2}

…

25

db.book.aggregate([

{ $unwind: '$price' } ,

{ $group: { _id: '$price.country',

avg_price: { $avg: '$price.v' },

bookcount: {$sum:1},

review: {$avg: '$review_score'}

}

},

{$match: { bookcount: { $gte: 50 } } },

])

Filter the documents

where bookcount is

greater than 50

26

{ "_id" : "UK", "avg_price" : 18.75, "bookcount": 150, "review": 4.3}

{ "_id" : "IT", "avg_price" : 22.49, "bookcount": 132, "review": 3.9}

…

27

db.book.aggregate([

{ $unwind: '$price' } ,

{ $group: { _id: '$price.country',

avg_price: { $avg: '$price.v' },

bookcount: {$sum:1},

review: {$avg: '$review_score'}

}

},

{$match: { bookcount: { $gte: 50 } } },

{$project: {avg_price: 1, review: { $floor: '$review' }}},

])

round down the

review score

28

{ "_id" : "UK", "avg_price" : 18.75, "review": 4}

{ "_id" : "IT", "avg_price" : 22.49, "review" : 3}

…

29

db.book.aggregate([

{ $unwind: '$price' } ,

{ $group: { _id: '$price.country',

avg_price: { $avg: '$price.v' },

bookcount: {$sum:1},

review: {$avg: '$review_score'}

}

},

{$match: { bookcount: { $gte: 50 } } },

{$project: {avg_price: 1, review: { $floor: '$review' }}},

{$limit:20}

])

Limit the results

to the first 20

documents

Compute the 95 percentile of the number of pages,

only for the books that contain the tag “guide”.

30

31

db.book.aggregate([

{$match: { tag : "guide"} }

])

select documents containing

“guide” in the tag array,

compare with tag:[“guide”]

32

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python", "tag" : [
"python", "guide", "programming"], "n" : 352, "review_score" : 4.6, "price" : [{ "v" : 24.99, "c" :
"€", "country" : "IT" }, { "v" : 19.49, "c" : "£", "country" : "UK" }], "author" : { "_id" : 1, "name" :
"John", "surname" : "Black" } }

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : [
"mongodb", "guide", "database"], "n" : 100, "review_score" : 4.3, "price" : [{ "v" : 19.99, "c" :
"€", "country" : "IT" }, { "v" : 18, "c" : "£", "country" : "UK" }], "author" : { "_id" : 1, "name" :
"Mario", "surname" : "Rossi" } }

…

33

db.book.aggregate([

{$match: { tag : "guide"} },

{$sort : { n: 1} }

])

sort the documents in ascending order

according to the value of the n field, which

stores the number of pages of each book

34

{ "_id" : ObjectId("5fb29ae15b99900c3fa24292"), "title" : "MongoDb guide", "tag" : [
"mongodb", "guide", "database"], "n" : 100, "review_score" : 4.3, "price" : [{ "v" : 19.99, "c" :
"€", "country" : "IT" }, { "v" : 18, "c" : "£", "country" : "UK" }], "author" : { "_id" : 1, "name" :
"Mario", "surname" : "Rossi" } }

{ "_id" : ObjectId("5fb29b175b99900c3fa24293"), "title" : " Developing with Python", "tag" : [
"python", "guide", "programming"], "n" : 352, "review_score" : 4.6, "price" : [{ "v" : 24.99, "c" :
"€", "country" : "IT" }, { "v" : 19.49, "c" : "£", "country" : "UK" }], "author" : { "_id" : 1, "name" :
"John", "surname" : "Black" } }

…

35

db.book.aggregate([

{$match: { tag : "guide"} },

{$sort : { n: 1} },

{$group: {_id:null, value: {$push: "$n"}}}

])

group all the records

together inside a single

document (_id:null),

which contains an array

with all the values of n

of all the records

36

{ "_id": null, "value": [100, 352, …]}

37

db.book.aggregate([

{$match: { tag : "guide"} },

{$sort : { n: 1} },

{$group: {_id:null, value: {$push: "$n"}}},

{$project:

{"n95p": {$arrayElemAt:

["$value",

{$floor: {$multiply: [0.95, {$size: "$value"}]}}

]

} }

}

])

compute the index at 95% of the array length

get the value of the array at a given index

with { $arrayElemAt: [<array>, <idx>] }

38

{ "_id" : null, "n95p" : 420 }

Compute the median of the review_score,

only for the books having at least a price
whose value is higher than 20.0.

39

40

db.book.aggregate([

{$match: {'price.v' : { $gt: 20 }} },

{$sort : {review_score: 1} },

{$group: {_id:null, rsList: {$push: '$review_score'}}},

{$project:

{'median': {$arrayElemAt:

['$rsList',

{$floor: {$multiply: [0.5, {$size: '$rsList'}]}}

]

} }

}

])

