
0

▪ A replica set is a group of mongod instances that maintain the same data set:
▪ 1 primary node

▪ several secondary node

▪ 1 arbiter

▪ Primary node
▪ receives all write operations

▪ confirming writes with { w: "majority" } write concern

▪ Secondary node
▪ replicates the primary’s oplog and apply the operations to their data sets

▪ if the primary is unavailable, an eligible secondary will hold an election to elect itself the new primary

▪ secondaries may have additional configurations for special usage profiles. For example, secondaries may
be non-voting or priority 0

▪ Arbiters
▪ do not maintain a data set

▪ maintain a quorum in a replica set by responding to heartbeat and election requests by other replica set
members

1

2

▪ When a primary does not communicate with
the other members of the set for more than the
configured electionTimeoutMillis period (10
seconds by default)

▪ The replica set cannot process write
operations until the election completes
successfully

▪ The replica set can continue to serve read
queries if such queries are configured to run
on secondaries while the primary is offline

▪ The median time for primary election should
not typically exceed 12 seconds

3

Number of Members
Majority Required to Elect a

New Primary
Fault Tolerance

3 2 1

4 3 1

5 3 2

6 4 2

4

▪ By default, clients read from the
primary

▪ Asynchronous replication to
secondaries means that reads from
secondaries may return data that does
not reflect the state of the data on the
primary

▪ Multi-document transactions that
contain read operations must use read
preference primary. All operations in a
given transaction must route to the
same member

▪ Until a transaction commits, the data
changes made in the transaction are not
visible outside the transaction

5

▪ Three member replica sets provide enough redundancy to survive most network
partitions and other system failures

▪ These sets also have sufficient capacity for many distributed read operations

▪ Replica sets should always have an odd number of members to ensure
that elections will proceed smoothly

▪ Maintain as much separation between members as possible by hosting
the mongod instances on separate machines

▪ Place each mongod instance on a separate host server serviced by redundant
power circuits and redundant network paths

▪ Install MongoDB on each system that will be part of your replica set

6

▪ Architecture
▪ deploy each member to its own machine

▪ if possible bind to the standard port 27017

▪ Hostnames
▪ use a logical DNS hostname instead of an ip address

▪ IP Binding
▪ use the bind_ip option to ensure that MongoDB listens for connections from applications on

configured addresses

▪ mongod --bind_ip localhost,My-Hostname

▪ Connectivity
▪ establish a virtual private network

▪ configure access control

▪ configure networking and firewall rules

7

▪ Set replication.replSetName option to the replica set name

▪ Set net.bindIp option to the hostname/ip

▪ Set any other settings as appropriate for your deployment

Replica Set Member Hostname

Member 0 mongodb0.example.net

Member 1 mongodb1.example.net

Member 2 mongodb2.example.net

mongod --replSet "rs0" --bind_ip localhost,<hostname(s)|ip address(es)>

8

▪ Connect a mongo shell to one of the mongod instances

mongo

▪ Initiate the replica set

rs.initiate({
_id : "rs0",
members: [

{ _id: 0, host: "mongodb0.example.net:27017" },
{ _id: 1, host: "mongodb1.example.net:27017" },
{ _id: 2, host: "mongodb2.example.net:27017" }

]
})

9

▪ View the replica set configuration

rs.conf()

▪ Ensure that the replica set has a primary

rs.status()

10

{ "_id" : "rs0",

"version" : 1,

"protocolVersion" : NumberLong(1),

"members" : [

{ "_id" : 0, "host" :

"mongodb0.example.net:27017",

"arbiterOnly" : false,

"buildIndexes" : true,

"hidden" : false,

"priority" : 1,

"tags" : { },

"slaveDelay" : NumberLong(0),

"votes" : 1 },

…],

"settings" : {

"chainingAllowed" : true,

"heartbeatIntervalMillis" : 2000,

"heartbeatTimeoutSecs" : 10,

"electionTimeoutMillis" : 10000,

"catchUpTimeoutMillis" : -1,

"getLastErrorModes" : { },

"getLastErrorDefaults" : { "w" : 1, "wtimeout" : 0 },

"replicaSetId" : ObjectId("585ab9df685f726db2c6a840")

} }

11

▪ Create the necessary data directories for each member

mkdir -p /srv/mongodb/rs0-0 /srv/mongodb/rs0-1 /srv/mongodb/rs0-2

▪ Start your mongod instances in their own shell windows

1) mongod --replSet rs0 --port 27017 --bind_ip localhost,<hostname(s)|ip address(es)> --dbpath

/srv/mongodb/rs0-0 --oplogSize 128

2) mongod --replSet rs0 --port 27018 --bind_ip localhost,<hostname(s)|ip address(es)> --dbpath

/srv/mongodb/rs0-1 --oplogSize 128

3) mongod --replSet rs0 --port 27019 --bind_ip localhost,<hostname(s)|ip address(es)> --dbpath

/srv/mongodb/rs0-2 --oplogSize 128

12

▪ Connect to one of your mongod instances through the mongo shell

mongo --port 27017

▪ Initiate the replica set

rsconf = {

_id: "rs0",

members: [

{ _id: 0, host: "<hostname>:27017" },

{ _id: 1, host: "<hostname>:27018" },

{ _id: 2, host: "<hostname>:27019" }

]

}

rs.initiate(rsconf)

13

▪ Start the new mongod instance

mongod --dbpath /srv/mongodb/db0 --replSet rs0 --bind_ip localhost,<hostname(s)|ip address(es)>

▪ Connect to the replica set’s primary

▪ Add the new member to the replica set

rs.add({ host: "mongodb3.example.net:27017", priority: 0, votes: 0 })

▪ Ensure that the new member has reached SECONDARY state

▪ Update the newly added member’s priority and votes if needed

var cfg = rs.conf();

cfg.members[4].priority = 1

cfg.members[4].votes = 1

rs.reconfig(cfg)

14

▪ Shut down the mongod instance for the member you wish to remove

▪ Connect to the replica set’s current primary

▪ Use rs.remove()

rs.remove("mongod3.example.net:27017")

rs.remove("mongod3.example.net")

15

