

Data Science Lab

Exercises

DataBase and Data Mining Group

Andrea Pasini, Elena Baralis

1. Theory questions

- Which statement is true?
 - To limit over-fitting, the accuracy of a classification model must be computed on the training set
 - b) To limit over-fitting, the accuracy of a classification model must be computed on a set of unlabeled data
 - To limit over-fitting, the accuracy of a classification model must be computed on a test set with a completely different data distribution from the training set
 - d) None of the previous statements is true.

1. Theory questions

Solution: d)

2. Classification

Given the following confusion matrix

- Q1: compute the accuracy score
- Q2: compute F-Measure (F1) of class b

predicted a b c d a 10 0 0 0 a 10 0 4 0 4 c 0 4 10 0 d 0 2 0 6

Q1: compute the accuracy score

Q2: compute F-Measure (F1) of class b

Solution

accuracy =
$$(10+4+10+6)/(30+4+4+2) = 30/40 = 0.75$$

$$p(b) = 4/(4+4+2) = 0.4$$

 $r(b) = 4/(4+4) = 0.5$
 $f1 = 2*(p*r)/(p+r) = 2*(0.2)/(0.9)$

3. Regression

- Given the following dataset, with 2 features (x0, x1) and 3 data points:
 - X = [[2, 4], [1, 2], [2, 0]]
- Apply to X the following multinomial regression pipeline
 - Feature extraction step

$$[x_0, x_1, x_0^2, x_1^2, x_0x_1]$$

- Regression parameters (to be applied on the extracted features)
 - B = [0, 2, 0, 1, 1/2], Bias=1
- Q1: What is the output vector with the predictions?
 - y pred = [?]

3. Regression

- Q2: Given the ground truth predictions
 - y_truth = [28, 9, 5]
 - Compute the Mean Absolute Error (MAE) of the obtained predictions (y_pred)

$$X = [[2, 4], [1, 2], [2, 0]]$$

$$[x_0, x_1, x_0^2, x_1^2, x_0x_1]$$

B = [0, 2, 0, 1, 1/2], Bias=1

Solution (Q1):

Apply the model:

Solution (Q2):

MAE =
$$1/3 * (|28-29|+|9-10|+|5-1|) = (1 + 1 + 4)/3 = 2$$

4. Computation of indices

- Given the labels predicted by a clustering algorithm and ground truth labels:
 - y_true = [1, 1, 1, 2]
 - y_pred = [3, 3, 1, 1]
- Compute the Rand Index score (RI)

$$RI = \frac{TP + TN}{\binom{n}{2}}$$

- where TP = number of pairs of elements that are in the same set in y true and in the same set in y pred
- TN = number of pairs of elements that are in different sets in y true and different sets in y pred
- n = number of data points

together in y_true

		together in y_pred						
	true	pred	TP	TN				
0-1	1	1	1					
0-2	1	0						
0-3	0	0		1				
1-2	1	0						
1-3	0	0		1				
2-3	0	1						

$$TP = 1$$

 $TN = 2$

$$RI = \frac{TP + TN}{\binom{n}{2}} = 3/6 = 0.5$$

5. Clustering

 Given the following distance matrix (each cell describes the distance between two points)

	a	b	С	d	e	f	g
a		6	4	7	8	3	6
b	6		6	3	7	7	6
С	4	6		7	7	3	9
d	7	3	7		6	8	4
e	8	7	7	6		7	8
f	3	7	3	8	7		6
g	6	6	9	4	8	6	

- Apply DBSCAN clustering. Hyperparameters:
 - Epsilon = 5. Minpoints = 2.

5. Clustering

Q1: Label each point with B(border), C (core), N(noise)

Q2: Assign a cluster id to each point

Q3: Compute the silhouette score of point g

Epsilon = 5. Minpoints = 2

Clusters

silh(g)?

1. Draw graph with distances

- 2. identify core points
 - a, c, f, d
- 3. identify border points
 - b, g

- 4. Identify clusters and noise points
- 5. Silhouette

• inter(g) =
$$(6+4)/2 = 5$$

• dist(g, c1) =
$$(ag+cg+fg)/3$$

= $(6+9+6)/3=7$

6. Python-related questions

- Given two Numpy vectors
 - X with shape (100, 50)
 - y with shape (50,)
- a) np.sqrt(((X-y)**2).sum(axis=1)) is the euclidean distance between rows of X and y and the result has shape (100, 1)
- b) np.sqrt(((X-y)**2).sum(axis=1)) is the euclidean distance between rows of X and y and the result has shape (100,)
- c) np.sqrt(((X-y).sum(axis=1))**2) is the euclidean distance between rows of X and y and the result has shape (100, 1)
- d) np.sqrt(((X-y)**2).sum(axis=0)) is the euclidean distance between rows of X and y and the result has shape (100,)

X with shape (100, 50) y with shape (50,)

Analyze the code for a), b):

np.sqrt(((X-y)**2).sum(axis=1))

Since the result is 1-dimensional, result will have shape: (100,) Answer **b** is correct.

Analyze the code for c):

np.sqrt(((X-y).sum(axis=1))**2) -> wrong because the square is computed after the sum of the differences

Analyze the code for d):

np.sqrt(((X-y)**2).sum(axis=0)) -> wrong because the sum is performed along axis 0

axis 0

7. Python-related questions

- Given a Dataframe with four columns (category, year, month, #subscriptions)
- a) df[['category', 'year']].pivot_table('#subscriptions', index='category', columns='year', aggfunc='mean')
 returns information about the average number of subscriptions for each combination of category and year
- b) df.groupby(by=['category']).sum().unstack()
 returns information about the total number of subscriptions for each combination
 of category and year
- df.pivot_table('#subscriptions', index='category', columns='year', aggfunc='sum')
 returns information about the maximum number of subscriptions for each combination of category and year
- d) df.drop(columns='month').groupby(by=['category', year']).sum().unstack() returns information about the total number of subscriptions for each combination of category and year
- e) None of the previous answers is correct

Answer: d) is correct