Data Science Lab

Exercises

- Which statement is true?

To limit over-fitting, the accuracy of a classification model must be computed on the training set

To limit over-fitting, the accuracy of a classification model must be computed on a set of unlabeled data

To limit over-fitting, the accuracy of a classification model must be computed on a test set with a completely different data distribution from the training set

None of the previous statements is true.

Solution: d)

2. Classification

- Given the following confusion matrix

	predicted				
		a	b	c	
l	d				
	a	10	0	0	

- Q1: compute the accuracy score
- Q2: compute F-Measure (F1) of class b

Q1: compute the accuracy score Q2: compute F-Measure (F1) of class b

Solution
accuracy $=(10+4+10+6) /(30+4+4+2)=30 / 40=0.75$
$p(b)=4 /(4+4+2)=0.4$
$r(b)=4 /(4+4)=0.5$
$\mathrm{f} 1=2^{*}\left(\mathrm{p}^{*} \mathrm{r}\right) /(\mathrm{p}+\mathrm{r})=2^{*}(0.2) /(0.9)$

- Given the following dataset, with 2 features ($\mathrm{xO}, \mathrm{x} 1$) and 3 data points:
- $X=[[2,4],[1,2],[2,0]]$
- Apply to X the following multinomial regression pipeline
- Feature extraction step
= $\left[x_{0}, x_{1}, x_{0}^{2}, x_{1}^{2}, x_{0} x_{1}\right]$
- Regression parameters (to be applied on the extracted features)
- $\mathrm{B}=[0,2,0,1,1 / 2]$, Bias $=1$
- Q1: What is the output vector with the predictions?
- y_pred = [?]
- Q2: Given the ground truth predictions
- y_truth $=[28,9,5]$
- Compute the Mean Absolute Error (MAE) of the obtained predictions (y_pred)
$X=[[2,4],[1,2],[2,0]]$

$$
\begin{aligned}
& {\left[x_{0}, x_{1}, x_{0}^{2}, x_{1}^{2}, x_{0} x_{1}\right]} \\
& B=[0,2,0,1,1 / 2], \text { Bias }=1
\end{aligned}
$$

Solution (Q1):

$$
\begin{gathered}
{[0,2,0,1,1 / 2]} \\
\text { X_poly }=[[2,4,4,16,8],[1,2,1,4,2],[2,0,4,0,0]]
\end{gathered}
$$

Apply the model:

$$
\begin{aligned}
\text { y_pred } & =[0+8+0+16+4,0+4+0+4+1,0+0+0+0+0]+1 \\
& =[28,9,0]+1 \\
& =[29,10,1]
\end{aligned}
$$

```
y_truth = [28, 9, 5]
y_pred = [29, 10, 1]
```

Solution (Q2):
MAE $=1 / 3$ * $(|28-29|+|9-10|+|5-1|)=(1+1+4) / 3=2$

- Given the labels predicted by a clustering algorithm and ground truth labels:
- y_true $=[1,1,1,2]$
- y_pred = $[3,3,1,1]$
- Compute the Rand Index score (RI)
- $R I=\frac{T P+T N}{\binom{n}{2}}$
- where TP = number of pairs of elements that are in the same set in y_true and in the same set in y_pred
- TN = number of pairs of elements that are in different sets in y_true and different sets in y_pred
- n = number of data points

$$
\begin{array}{r}
0,1,2,3 \\
\text { y_true }=[1,1,1,2] \\
\text { y_pred }=[3,3,1,1]
\end{array}
$$

$$
\begin{aligned}
& \mathrm{TP}=1 \\
& \mathrm{TN}=2
\end{aligned}
$$

$$
R I=\frac{T P+T N}{\binom{n}{2}}=3 / 6=0.5
$$

- Given the following distance matrix (each cell describes the distance between two points)

	a	b	c	d	e	f	g
a		6	4	7	8	3	6
b	6		6	3	7	7	6
c	4	6		7	7	3	9
d	7	3	7		6	8	4
e	8	7	7	6		7	8
f	3	7	3	8	7		6
g	6	6	9	4	8	6	

- Apply DBSCAN clustering. Hyperparameters:
- Epsilon $=5$. Minpoints $=2$.

5. Clustering

- Q1: Label each point with B (border), C (core), N (noise)

$$
a \quad b \quad c \quad d \quad e \quad f
$$

- Q2: Assign a cluster id to each point

$$
a \quad b \quad c \quad d \quad e \quad f \quad g
$$

- Q3: Compute the silhouette score of point g

	a	b	c	d	e	f	g	Epsilon $=5$. Minpoints $=2$							
a		6	(4)	7	8	(3)	6	a	b		d			g	
b	6		6	(3)	7	7	6	C	B	C	C	N		B	
C	(4)	6		7	7	(3)	9	Clusters							
d	7	(3)	7		6	8	(4)								
e	8	7	7	6		7	8		b	c	d			f	g
								1	2	1	2			1	2
f	(3)	7	(3)	8	7		6								
g	6	6	9	(4)	8	6		silh(g)?							

1. Draw graph with distances

2. identify core points

- a, c, f, d

3. identify border points

- b, g

4. Identify clusters and noise points
5. Silhouette

- inter $(\mathrm{g})=(6+4) / 2=5$
- $\quad \operatorname{dist}(\mathrm{g}, \mathrm{c} 1)=(\mathrm{ag}+\mathrm{cg}+\mathrm{fg}) / 3$ $=(6+9+6) / 3=7$
- \quad extra $(g)=\min _{i}\left(\operatorname{dist}\left(g, c_{i}\right)\right)$

$$
=\min ([\operatorname{dist}(g, c 1)])=7
$$

- $\operatorname{silh}(\mathrm{g})=(\mathrm{extra}(\mathrm{g})-$ inter $(\mathrm{g})) /$ max(extra(g), inter(g))

$$
=(7-5) /(7)=2 / 7
$$

6. Python-related questions

- Given two Numpy vectors
- \quad X with shape $(100,50)$
- y with shape (50,)
a) $n p \cdot \operatorname{sqrt}(((X-y) * * 2) \cdot \operatorname{sum}($ axis $=1))$
is the euclidean distance between rows of X and y and the result has shape $(100,1)$
b) $n p . \operatorname{sqrt}(((X-y) * * 2) \cdot \operatorname{sum}($ axis $=1))$
is the euclidean distance between rows of X and y and the result has shape (100,)
c) $n p . \operatorname{sqrt}(((X-y) \cdot \operatorname{sum}(a x i s=1)) * * 2)$
is the euclidean distance between rows of X and y and the result has shape $(100,1)$
d)
np.sqrt(((X-y)**2).sum(axis=0))
is the euclidean distance between rows of X and y and the result has shape (100,)
X with shape $(100,50)$
y with shape (50,)
Analyze the code for $a), b)$:
np.sqrt(((X-y)**2).sum(axis=1))

Since the result is 1-dimensional, result will have shape: $(100$, Answer b is correct.

Analyze the code for $c)$:
np.sqrt(((X-y).sum(axis=1)) $\left.{ }^{* *} 2\right)$-> wrong because the square is computed after the sum of the differences
Analyze the code for d):
np.sqrt(((X-y)**2).sum(axis=0)) -> wrong because the sum is performed along axis 0

7. Python-related questions

- Given a Dataframe with four columns (category, year, month, \#subscriptions)
a) df[['category', 'year']].pivot_table('\#subscriptions', index='category', columns='year', aggfunc='mean')
returns information about the average number of subscriptions for each combination of category and year
b) df.groupby(by=['category']).sum().unstack()
returns information about the total number of subscriptions for each combination of category and year
c) df.pivot_table('\#subscriptions', index='category', columns='year', aggfunc='sum')
returns information about the maximum number of subscriptions for each combination of category and year
d) df.drop(columns='month').groupby(by=['category', year']).sum().unstack() returns information about the total number of subscriptions for each combination of category and year
e) None of the previous answers is correct

Answer: d) is correct

