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Image understanding

▪ Image understanding
▪ Find objects inside images
▪ Analyze their shape and position

▪ Applications
▪ Image annotation (e.g., Google Photos, Pinterest)
▪ Video annotation (e.g., YouTube)
▪ Autonomous driving and robotics
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Image understanding

▪ Taxonomy of the tasks
▪ Image classification
▪ Object detection
▪ Semantic segmentation
▪ Instance segmentation
▪ Panoptic segmentation
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Image classification

▪ Predict the probability of an image of belonging to a 
specific class

▪ Convolutional filters extract features from the input 
tensor

▪ Final layer is a fully connected MLP
▪ Typically exploits the softmax function

4



Image classification

▪ Evaluation
▪ Precision, recall, f-measure

▪ Top-5 accuracy (% true positives):
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Image classification

▪ ImageNet challenge, with 1000 classes
▪ Alexnet (2012) [1]

▪ Resnet (2015) [2]
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Top-5 Accuracy = 86%

Top-5 Precision = 96% (Resnet152)



Object detection

▪ Find multiple objects in the same image
▪ Each object is identified by a bounding box
▪ Return class probabilities for each bounding box
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Object detection

▪ Evaluation of a single detection
▪ IoU (Intersection over Union) in range [0, 1]
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IoU = intersection/union
= TP/(FP+FN+TP)



Object detection

▪ Evaluation of multiple detections
▪ Mean Average Precision (mAP)

▪ See appendix
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Object detection

▪ R-CNN (2014) [3]: Find regions, then classify with CNN
▪ ROI = Region Of Interest
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Object detection

▪ R-CNN issues
▪ Selective search is slow (sometimes inaccurate)
▪ CNN applied multiple times (2K+ regions per image)

▪ Solution
▪ Fast R-CNN: 

▪ Extract features with CNN only once
▪ Apply ROI pooling
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Object detection

▪ Fast R-CNN (2015) [4]: ROI pooling
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Object detection

▪ Faster R-CNN (2015) [5]: Replace selective search
with region proposal network 
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▪ Another famous model:
▪ YOLO - You Only Look Once – (2016) [6]

▪ 30-200 FPS (Pascal Titan X GPU), YOLO v4
▪ Up to 0.57 mean Average Precision (mAP) on Microsoft COCO dataset

Object detection
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Image segmentation

▪ Predict the probability of each pixel of belonging
to a specific class

▪ Heavy computation
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Image segmentation

▪ Evaluation:
▪ Pixel accuracy: % of correct pixels

▪ Also can be separated for each class
▪ IoU(class): (n. correct pixels) / (pred U g-truth)
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Image segmentation

▪ Methods:
▪ Encoder decoder networks
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Encoder Decoder

Convolutional layer

(down) pooling

Upsampling (e.g., bilinear interpolation)



Image segmentation

▪ U-Net (2015) [7]

▪ skip-connections: provide high-resolution information 
to the decoder
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Image segmentation

▪ Receptive field
▪ How much context is it retrieved by feature f(3,4)?
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Image segmentation

▪ How to increase receptive field?

▪ Dilated Convolution (2016) [8]

▪ bigger sparse filters to get more context
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▪ PSPNet (2016) [9] - 81.2 mIoU on Cityscapes
▪ Pyramid pooling: multi-size pooling filters

▪ Allows capturing global image context

Image segmentation
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Image segmentation

▪ DeepLab V3 (2017) [10] - 81.3 mIoU on Cityscapes
▪ Atrous Spatial Pyramid Pooling (ASPP):

▪ = Atrous (dilated) Convolution + pyramid pooling
▪ Multi-size conv filters (similar to Pyramid Pooling)
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Instance segmentation

▪ Segmentation does not distinguish between instances
▪ Instance segmentation: Detect bounding box + mask
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Instance segmentation

▪ Mask RCNN (2017) [11]

▪ Same structure as Faster-RCNN
▪ Includes conv layers to generate a mask for each bbox
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Panoptic segmentation

▪ Instance segmentation: What about uncountable
objects?
▪ Sky, grass, vegetation, dirt, road, …

▪ Panoptic segmentation
▪ Pan-optic, all you can see

▪ Semantic segmentation for stuff (uncountable objects)
▪ Instance segmentation for objects

▪ Challenge launched in 2019 by Microsoft COCO [12]
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Panoptic segmentation

▪ Panoptic segmentation output
▪ Class matrix + instance matrix
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Panoptic segmentation

▪ Methods:
▪ Heuristics to merge results from semantic and 

instance segmentation
▪ Single neural network:

▪ Panoptic Feature Pyramid Networks (2019) [13]
• Unified feature extraction (FPN)
• Mask R-CNN + semantic segmentation branch
• Merge with heuristic

▪ MaX-DeepLab (2020) [14]

• Based on transformers
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Object detection (mAP)

▪ Evaluation of multiple detections
▪ Take all bboxes with prediction confidence > thr

▪ TP = IoU>=0.5 and same class, FP = otherwise
▪ Take all bboxes from ground truth

▪ FN = IoU<0.5 with any prediction with the same class
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Object detection (mAP)

▪ Evaluation of multiple detections
▪ Compute precision, recall for each class 

▪ Varying thr value
▪ Average Precision (AP): 

▪ area under precision recall curve
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