


▪ Does your application do more 
reads than writes? 

▪ Which pieces of data need to 
be together when read from 
the database? 

▪ What performance
considerations are there? 

▪ How large are the documents? 

▪ How large will they get? 

▪ How do you anticipate your 
data will grow and scale?

1

source: https://developer.mongodb.com/how-to/polymorphic-pattern

https://developer.mongodb.com/how-to/polymorphic-pattern


▪ Approximation

▪ Attribute

▪ Bucket

▪ Computed

▪ Document Versioning

▪ Extended Reference

▪ Outlier

▪ Pre-allocation

▪ Polymorphic

▪ Schema Versioning

▪ Subset

▪ Tree
2

source: https://developer.mongodb.com/how-to/polymorphic-pattern

https://developer.mongodb.com/how-to/polymorphic-pattern


▪ E-Commerce selling books
▪ who has purchased a particular book?

▪ store an array of user_id who purchased 
the book, in each book document

▪ You have a solution that works for 
99.99% of the cases, but what happens 
when a top-seller book is released?

▪ You cannot store millions of user_ids due 
to the document size limit (16 Mbyte)

▪ Totally redesigning for the outlier is 
detrimental for the typical conditions

▪ The outlier pattern prevents a few queries 
or documents from driving our solution 
towards one that would not be optimal for 
the majority of our use cases

3

▪ Add a new field to "flag" the document as 
an outlier, e.g., “has_extras”

▪ Move the overflow information into a 
separate document linked with the book's 
id. 

▪ Inside the application, we would be able to 
easily determine if a document “has 
extras”.

▪ Only in such outlier cases, the application 
would retrieve the extra information.



▪ Useful when 
▪ few queries or documents that don’t fit into 

the rest of your typical data patterns 

▪ Pros
▪ prevents a few documents or queries from 

determining an application’s solution.

▪ queries are tailored for “typical” use cases, 
but outliers are still addressed

▪ Cons
▪ often tailored for specific queries, 

therefore ad hoc queries may not perform 
well

▪ much of this pattern is done with 
application code

▪ Examples
▪ social network relationships

▪ book sales

▪ movie reviews
4

▪ Add a new field to "flag" the document as 
an outlier, e.g., “has_extras”

▪ Move the overflow information into a 
separate document linked with the book's 
id. 

▪ Inside the application, we would be able to 
easily determine if a document “has 
extras”.

▪ Only in such outlier cases, the application 
would retrieve the extra information.



▪ Represent a theater room as a 2-
dimensional array where each seat has a 
"row" and "number", for example, the 
seat "C7“

▪ Some rows may have fewer seats, 
however finding the seat "B3" is faster 
and cleaner in a 2-dimensional array, 
than having a complicated formula to 
find a seat in a one-dimensional array 
that has only cells for the existing seats. 

▪ Being able to identify accessible seating 
is also easier as a separate array can be 
created for those seats.

5



Another example: a reservation system where a resource 
is blocked or reserved, on a per day basis.

Using one cell per available day would likely make 
computations and checking faster than keeping a list of 
ranges.

▪ Useful when 
▪ your document structure and your application simply needs 

to fill in data into pre-defined slots

▪ Pros
▪ design simplification when the document structure is known 

in advance

▪ Cons
▪ simplicity versus performance (size on disk)

▪ Examples
▪ 2-dimensional structures, reservation systems

6



▪ When all documents in a collection are 
of similar, but not identical, structure.

▪ Useful when we want to access (query) 
information from a single collection. 

▪ Grouping documents together based 
on the queries we need to run, instead 
of separating the objects across tables 
or collections, helps improve 
performance.

▪ Example: track professional athletes 
across different sports.
▪ If we were not using the Polymorphic Pattern, 

we might have a collection for Bowling 
Athletes and a collection for Tennis Athletes. 

▪ When we wanted to query on all athletes, we 
would need to do a time-consuming and 
potentially complex join.

7



▪ Useful when 

▪ there are a variety of documents that 
have more similarities than differences

▪ the documents need to be kept in a 
single collection 

▪ Pros

▪ Easy to implement

▪ Queries can run across a single 
collection

▪ Cons

▪ different code paths required in the 
application, based on the information in 
each document

8

▪ Examples

▪ Single View application

▪ cross-company or cross-unit use cases

▪ Wide product catalogs

▪ Single View application

▪ aggregates data from multiple sources into 
a central repository allowing customer 
service, insurance agents, billing, and 
other departments to get a 360° picture of 
a customer

source: https://developer.mongodb.com/how-to/polymorphic-pattern

https://developer.mongodb.com/how-to/polymorphic-pattern


▪ Regardless of the reason behind the change, 
after a while, we inevitably need to make 
changes to the underlying schema design in 
our application

▪ This often poses challenges and perhaps 
some headaches in a relational database 
system
▪ Typically, the application needs to be stopped, 

the database migrated to support the new 
schema and then restarted. This downtime can 
lead to poor customer experience. Additionally, 
what happens if the migration wasn’t a complete 
success? Reverting back to the prior state is 
often an even larger challenge.

▪ In NoSQL we can use the Schema Versioning 
pattern to make the changes easily 
manageable

9

▪ Create and save the new schema to the database 
with a schema_version field. To allow our 
application to know how to handle this particular 
document.

▪ Avoid exploiting implicit presence of some fields.

▪ Increment schema_version value at each change.



▪ Useful when 
▪ changes to the data schema frequently 

occur in an application’s lifetime

▪ previous and current versions of 
documents should exist side by side in a 
collection 

▪ Pros
▪ no downtime needed

▪ control of schema migration

▪ reduced future technical debt

▪ Cons
▪ might need two indexes for the same field 

during migration

▪ Examples
▪ customer profile

10

▪ Depending on the application and use case 

▪ updating all documents to the new design

▪ updating when a record is accessed

source: https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pattern

https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pattern


▪ When the working set of data and indexes 
grows beyond the physical RAM allotted, 
performance is reduced as disk accesses 
starts to occur and data rolls out of RAM
▪ add more RAM to the server

▪ sharding our collection, but that comes with 
additional costs and complexities

▪ reduce the size of our working set with the 
Subset pattern

▪ Caused by large documents which have a 
lot of data that isn't actually used by the 
application
▪ e-commerce site that has a list of reviews for 

a product. 

▪ accessing that product's data, we'd only need 
the most recent ten or so reviews. 

▪ pulling in the entirety of the product data with 
all the reviews could easily cause the working 
set to uselessly expand

11



▪ Split the collection into two collections. 

▪ One collection would have the most 
frequently used data, e.g., current reviews 

▪ The other collection would have less 
frequently used data, e.g., old reviews, 
product history, etc.

▪ In the Product collection, we'll only keep the 
ten most recent reviews. This allows the 
working set to be reduced by only bringing in 
a portion, or subset, of the overall data. 

▪ The additional information, reviews in this 
example, are stored in a separate Reviews
collection that can be accessed if the user 
wants to see additional reviews. 

12



▪ Useful when 
▪ the working set exceed the capacity of 

RAM due to large documents that have 
much of the data in the document not 
being used by the application

▪ Pros
▪ reduction in the overall size of the working 

set.

▪ shorter disk access time for the most 
frequently used data

▪ Cons
▪ we must manage the subset

▪ pulling in additional data requires 
additional trips to the database

▪ Examples
▪ reviews for a product

13



▪ you would like to identify the 
reporting chain from an employee to 
the CEO

▪ There are many ways to represent a tree in 
a legacy tabular database. 
▪ for a node in the graph to list its parent and 

for a node to list its children 

▪ require multiple access to build the chain of 
nodes

▪ Store the full path from a node to the top of 
the hierarchy, as a list of the parents
▪ data duplication

▪ a small cost compared to the benefits you can 
gain from not calculating the trees all the 
time.

▪ Example: products belong to categories, 
which are part of other categories. 

14



▪ Useful when 

▪ hierarchical data structure is frequently 
queried 

▪ Pros

▪ increased performance by avoiding 
multiple JOIN operations

▪ Cons

▪ updates to the graph need to be 
managed in the application

▪ Examples

▪ product catalogs

15



▪ depend on the type of 
application

▪ look at the ones that are 
frequently used in your use 
case

▪ data schema is very
dependent on your data 
access patterns

source: 
https://www.mongodb.com/blog/post/building-with-
patterns-a-summary

16

https://www.mongodb.com/blog/post/building-with-patterns-a-summary


17



For further information on the content of these slides,
please refer to the book

“Design with MongoDB”

Best Models for Applications

by Alessandro Fiori

https://flowygo.com/en/projects/design-with-mongodb/

18

https://flowygo.com/en/projects/design-with-mongodb/

