

BUILDIN

= Does your application do more
reads than writes?

= Which pieces of data need to
be together when read from
the database?

= What performance
considerations are there?

= How large are the documents?
= How large will they get?

= How do you anticipate your
data will grow and scale?

G WITH PATTERNS

Sch :
in
the Shoyqy i U yo
d ta a Oo k]1 Ur
es e: js
spattern Whay
délta Ara’ S for tha t

source:

0

https://developer.mongodb.com/how-to/polymorphic-pattern

BUILDING WITH PATTERNS

= Approximation
= Attribute

= Bucket

= Computed

= Document Versioning

= Extended Reference

= Outlier

= Pre-allocation

= Polymorphic

= Schema Versioning
= Subset

= Tree

“MOHQ‘ODB is
schema-less. In

Ctis tha
fmost PerformanCe :

tl oSues we've foung
face back ¢4 pooy

source: https://developer.mongodb.com/how-to/polymorphic-pattern O
’@

https://developer.mongodb.com/how-to/polymorphic-pattern

Il_idll :

ObjectID("507f191e810c19729de860ea"),

"title": "Harry Potter, the Next Chapter",
OU I LIER "author": "J.K. Rowling",

"customers_purchased": ["user@@", "user@l", "user02", .., "user999"],
"has_extras": "true"

= E-Commerce selling books
= who has purchased a particular book?

= store an array of user_id who purchased
the book, in each book document

= You have a solution that works for
99.99% of the cases, but what happens
when a top-seller book is released?

= You cannot store millions of user ids due
to the document size limit (16 Mbyte)

= Totally redesigning for the outlier is
detrimental for the typical conditions

= The outlier pattern prevents a few queries
or documents from driving our solution
towards one that would not be optimal for
the majority of our use cases

Add a new field to "flag" the document as
an outlier, e.g., ““has_extras”

Move the overflow information into a
separate document linked with the book's
id.

Inside the application, we would be able to
easily determine if a document “has
extras’.

Only in such outlier cases, the application
would retrieve the extra information.

)

"_id": ObjectID("507f191e810c19729de860ea"),

"title": "Harry Potter, the Next Chapter",
OU I LIER "author": "J.K. Rowling",

"customers_purchased": ["user@@", "user@l", "user02", .., "user999"],
"has_extras": "true"

= Useful when

= few queries or documents that don’t fit into
the rest of your typical data patterns

= Pros

= prevents a few documents or queries from
determining an application’s solution.

= queries are tailored for “typical” use cases,
but outliers are still addressed

= Cons

= often tailored for specific queries,
thelliefore ad hoc queries may not perform
we

= much of this pattern is done with
application code

= Examples
= social network relationships
= book sales
= movie reviews

Add a new field to "flag" the document as
an outlier, e.g., ““has_extras”

Move the overflow information into a
separate document linked with the book's
id.

Inside the application, we would be able to
easily determine if a document “has
extras’.

Only in such outlier cases, the application
would retrieve the extra information.

L)

PRE-ALLOCATION

= Represent a theater room as a 2-

. . A1l A2 A3| A4
dimensional array where each seat has a
"row" and "number", for example, the B1! B2l B3| B4l B5 |B6
'row’ anc 81 1(52) 3 a5 50

= Some rows may have fewer seats,

however finding the seat "B3" is faster
and cleaner in a 2-dimensional array,
than having a complicated formula to
find a seat in a one-dimensional array
that has only cells for the existing seats.

= Being able to identify accessible seating
is also easier as a separate array can be
created for those seats.

PRE-ALLOCATION

Another example: a reservation system where a resource
is blocked or reserved, on a per day basis.

Using one cell per available day would likely make
computations and checking faster than keeping a list of
ranges.

= Useful when
= your document structure and your application simply needs
to fill in data into pre-defined slots
= Pros
= design simplification when the document structure is known
in advance

= Cons
= simplicity versus performance (size on disk)

= Examples
= 2-dimensional structures, reservation systems

POLYMORPHIC

= When all documents in a collection are
of similar, but not identical, structure.

= Useful when we want to access (query)
information from a single collection.

= Grouping documents together based
on the queries we need to run, instead
of separating the objects across tables
or collections, helps improve
performance.

= Example: track professional athletes
across different sports.

= If we were not using the Polymorphic Pattern,
we might have a collection for Bowling
Athletes and a collection for Tennis Athletes.

= When we wanted to query on all athletes, we
would need to do a time-consuming and
potentially complex join.

“300_games”: 25,
“career_titles”: 43,
“other_sports”: “baseball”

}
{

“event”: {
“type”: “singles”,
“career_tournaments”: 390,
“career_titles”: 167

“sport”: “tennis”,

“athlete_name”: “Martina Navratilova”,

“career_earnings”: {value: NumberDecimal(“216226089”), currency: “USD”},
“career_tournaments”: 390,

“career_titles”: 167,

POLYMORPHIC

= Useful when

= there are a variety of documents that
have more similarities than differences

= the documents need to be keptin a
single collection

= Pros
= Easy to implement

= Queries can run across a single
collection

= Cons

= different code paths required in the
application, based on the information in
each document

“300_games”: 25,
“career_titles”: 43,
“other_sports”: “baseball”

“event”: {
“type”: “singles”,
“career_tournaments”: 390,
“career_titles”: 167

}

= Examples
= Single View application
= Cross-company or cross-unit use cases
= Wide product catalogs

= Single View application
= aggregates data from multiple sources into
a central repository allowing customer
service, insurance agents, billing, and
other departments to get a 360° picture of
a customer

source: https://developer.mongodb.com/how-to/polymorphic-pattern

https://developer.mongodb.com/how-to/polymorphic-pattern

“_id": "<ObjectId>", ,-1d": “<Objectld>",
" "name": "Darth Vader",

w A "name": "Anakin Skywalker", "home": "503-555-0100"

n n, 1 S _ " nome" : 3- - r
Yl | home " ”5®; >55-0000", "work": "503-555-0110",
| "':"_ WOI"k H 5@_1_555_@@1@ "mObile": "503-555-0120"

= Regardless of the reason behind the change,
after a while, we inevitably need to make
changes to the underlying schema design in
our application

' id": "<ObjectId>",
"schema_version": "2",
"name": "Anakin Skywalker (Retired)",

. . "contact_method": [
This often poses challenges and perhaps { "work": "503-555-921a" },

some headaches in a relational database { "mobile": "5@3-555-0220" },
SYStem { "twitter": "@anakinskywalker" },
= Typically, the application needs to be stopped, { "skype": "AlwaysWithYou" }

the database migrated to support the new
schema and then restarted. This downtime can
lead to poor customer experience. Additionally,
what happens if the migration wasn’t a complete
success? Reverting back to the prior state is
often an even larger challenge.

= Create and save the new schema to the database
with a schema_version field. To allow our
application to know how to handle this particular

* In NoSQL we can use the Schema Versioning document.
?nag:l%glefbﬁake the changes easily = Avoid exploiting implicit presence of some fields.

= Increment schema_version value at each change. @

SCHEMA VERSIONING

Useful when

= changes to the data schema frequently
occur in an application’s lifetime

= previous and current versions of
documents should exist side by side in a
collection

Pros
= no downtime needed

= control of schema migration
» reduced future technical debt

Cons

= might need two indexes for the same field
during migration

Examples
= customer profile

source:

"_id": "<ObjectId>", "_id": "<Objectld>",
||name||: "Aﬂakiﬂ Sky\'\fa.l.ker", name : Darth Vader ’

"home": "503-555-0100"
n n, 1" 3_ _ n !
home'": "503-555-0000", bwork": "503-555-0110",

"WOI"k”: ”5@3_555_091@” "mObile": II5@3_555_@12@II

" id": "<ObjectId>",
"schema_version": "2",
"name": "Anakin Skywalker (Retired)",
"contact_method": [
{ "work": "503-555-0210" },
{ "mobile": "503-555-0220" },
{ "twitter": "@anakinskywalker" },
{ "skype": "AlwaysWithYou" }

= Depending on the application and use case
= updating all documents to the new design
= updating when a record is accessed

L)

https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pattern

()

id: ObjectId("507f1f77bcf86cd799439011”),

name: “Super Widget”,

description: “This is the most useful item in your toolbox.”
price: { value: NumberDecimal("119.99"), currency: "USD" },

revi
re few_id: 86,
review_author: “Kristina”,
review_text: “This is indeed an amazing widget.”,
published_date: ISODate("2019-02-18")
; c

review_text: “Very nice product, low shipping.”,
published_date: ISODate("2019-82-17")

= When the working set of data and indexes G AL ot
grows beyond the physical RAM allotted, poblished dater TiobsteCo3ati-12-06)
performance is reduced as disk accesses)

starts to occur and data rolls out of RAM \
= add more RAM to the server

= sharding our collection, but that comes with
additional costs and complexities e = =

a . a review_id: 786, _id: ObjectId(”507f1f77bcf86cd799439011"),
" reduce the Slze Of our Worklng Set Wlth the product_id: ObjectId("507f1f77bcf86cd799439011"), name: “Super Widget”,
review_author: “Kristina”, description: “This is the most useful item in your toolbox.”
Subset pattern review_text: “This is indeed an amazing widget.”, price: { value: NumberDecimal("119.99"), currency: "USD" },
published_date: ISODate("2819-082-18") vemer.{»:s.: [
}

= Caused by large documents which have a | -

review_id: 785,

lot of data that isn't actuallY used bY the grodicizigcabbiect a8t iAZbCiRIChAEaRBLIEDS pub Lished.date: 130Date(2019-02-18")

review_author: “Trina”, ¥
review_text: “Very nice product, slow shipping.”,

appllcatlon published_date: ISODate("2019-82-17") {

= e-commerce site that has a list of reviews for | , review uthor: 7 |
a pIOduCt' L:;;:Ei?d ll‘ﬁlbje::tldll"fﬂ‘fIf"‘b:;ftsq::_d*u‘;'qjc'n]||“j|_ . ;wl;lv\,l;,:ﬁe T0Date (2015

& dite: TSODRLS(A2819-02-16")

review_author: “Hans”,
= accessing that product's data, we'd only need PubLished date: T50Dste(2017-12-06 >
the most recent ten or so reviews.

= pulling in the entirety of the product data with L Review Collection) o
all the reviews could easily cause the working

'
set to uselessly expand @

Product Collection

SUBSET

= Split the collection into two collections.

= One collection would have the most
frequently used data, e.g., current reviews

= The other collection would have less
frequently used data, e.g., old reviews,
product history, etc.

= In the Product collection, we'll only keep the
ten most recent reviews. This allows the
working set to be reduced by only bringing in
a portion, or subset, of the overall data.

= The additional information, reviews in this
example, are stored in a separate Reviews
collection that can be accessed if the user
wants to see additional reviews.

@&

name: “Super Widget”,

reviews: |

review_id: 8¢

“Kristina”,

review_author:
review_text:
published_date: ISODate(
review_id: 785,
review_author: “Trina”,
review_text: “Very nice pr
published_date: ISODate
review_id: 1,
review_author: “Hans”,
review_text: “Meh, it’
published_date: ISODate(

("2019-07

12017-12

id: ObjectId("507f1f77bcf86cd799439011”),

description: “This is the most useful item in your toolbox.”
price: { value: NumberDecimal("119.99"), currency: "USD" },

“This is indeed an am
"2019-02-18")

1zing widget.”,

w shipping.”,

17")

N

review_id: 786,

product_id: ObjectId("507f1f77bcf86cd799439011"),
review_author: “Kristina”,

review_text: “This is indeed an amazing widget.”,
published_date: ISODate("2819-082-18")

review_id: 785,

product_id: ObjectId(”507f1f77bcfB86cd799439011"),
review_author: “Trina”,

review_text: “Very nice product, slow shipping.”,
published_date: ISODate(”2019-02-17")

review_id: 1,

product_id: ObjectId("507f1f77bcfB86cd799439011"),
review_author: “Hans”,

review_text: “Meh, it’s okay.”,

published_date: ISODate(”2017-12-06")

Review Collection

~

(-

_id: ObjectId(”507f1f77bcf86cd799439011"),
name: “Super Widget”,

description: “This is the most useful item in your toolbox."
nsph

price: { value: NumberDecimal("119.99"),
reviews: [
{
review_id: 786,
rey author: “Kristina”,
< [

currency:

review_text: “This is indeed an amazing widget.”,

published_date: ISODate("2019-02-18")
}
{

review_id: 776,

e author: “Pablo”,

star 5

stars: 5
review_text: “Wow! Amazing.”,
published_date: ISODate("2019-02-16")

}

Product Collection

\

h

1)

SUBSET

Useful when

= the working set exceed the capacity of
RAM due to large documents that have
much of the data in the document not
being used by the application

Pros

= reduction in the overall size of the working
set.

= shorter disk access time for the most
frequently used data

Cons
= we must manage the subset

= pulling in additional data requires
additional trips to the database

Examples
= reviews for a product

€

~

id: ObjectId("507f1f77bcf86cd799439011"),
name: “Super Widget”,
description: “This is the most useful item in your toolbox.”
price: { value: NumberDecimal("119.99"), currency: "USD" },
reviews: [
review_id: 786,
review_author: “Kristina”,
review_text: “This is indeed an amazing widget.”,
published_date: ISODate("2019-02-18")
review_id: 785,
review_author: “Trina”,
review_text: “Very nice product, slow shipping.”,
published_date: ISODate("2019-82-17")
review_id: 1,
review_author: “Hans”,
review_text: “Meh, it’ kay.”,
published_date: ISODate("2017-12-06")
]

-~

review_id: 786,

/

{

product_id: ObjectId("507f1f77bcf86cd799439011"), name: “Super Widget”,

review_author: “Kristina”,

review_text: “This is indeed an amazing widget.”,

published_date: ISODate("2019-82-18") reviews: [

review_id: 785,

product_id: ObjectId(”507f1f77bcfB86cd799439011"),

review_author: “Trina”,

review_text: “Very nice product, slow shipping.”,

{
review_id: 786,
review_author:
stars: 5

published_date: ISODate("2019-02-17") {

review_id: 1,

product_id: ObjectId(”507f1f77bcfB86cd799439011"),

review_author: “Hans”,
review_text: “Meh, it’s okay.”,

published_date: ISODate(”2017-12-06")

Review Collection J

review_id: 776

stars: 5

_id: ObjectId("507f1f77bcf86cd799439011"),

review_text: “This is indeed an amazing widget.”,

published_date: ISODate("2019-02-18")

review_author: “Pablo”,

review_text: “Wow! Amazing.”,
published_date: ISODate("2019-02-16")

Product Collection

description: “This is the most useful item in your toolbox.”
price: { value: NumberDecimal("119.99"), currency: "USD" },

~

6

TREE

= you would like to identify the
reporting chain from an employee to
the CEO

= There are many ways to represent a tree in
a legacy tabular database.

= for a node in the graph to list its parent and
for a node to list its children

= require multiple access to build the chain of
nodes

= Store the full path from a node to the top of
the hierarchy, as a list of the parents

= data duplication

= a small cost compared to the benefits you can
gain from not calculating the trees all the
time.

= Example: products belong to categories,
which are part of other categories.

TREE

» Useful when

= hierarchical data structure is frequently
queried

= Pros

= increased performance by avoiding
multiple JOIN operations

= Cons

= updates to the graph need to be
managed in the application

= Examples
= product catalogs

Patterns

Approximation
Attribute

Bucket

Computed
Document Versioning
Extended Reference
Outlier

Preallocated
Polymorphic
Schema Versioning
Subset

Tree and Graph

Use Case Categories

<N

<

<

<

<

QS

S8 8

S

S

Q&

S

<

<

Q&

S8 S
1

QS8 &

SSSS

SUMMARY

= depend on the type of
application

= look at the ones that are
frequently used in your use
case

= data schema is very
dependent on your data
access patterns

source:

©

https://www.mongodb.com/blog/post/building-with-patterns-a-summary

BIBLIOGRAPHY

For further information on the content of these slides,
please refer to the book

“Design with MongoDB”
Best Models for Applications

by Alessandro Fiori

https://flowygo.com/en/projects/design-with-mongodb/

