Writing your report

A very brief introduction to scientific writing

Flavio Giobergia Elena Baralis

Data science lab: process and methods

Scientific writing (in a slide)

 Scientific writing is the technical writing used to communicate your work to others

Scientific communication requires clarity and concision

 Scientific writing should address a research question, hypotheses, experiments, results and discussion

Scientific writing (in a slide)

 Scientific writing is the technical writing used to communicate your work to others

Scientific communication requires clarity and concision

 Scientific writing should address a research question, hypotheses, experiments, results and discussion

Technical writing to communicate your work

- Technical writing is the writing found in:
 - Textbooks
 - Scientific papers
 - Technical reports

- Communicating your work means:
 - Stating a "question" and an "answer"
 - Explaining the rationale behind the answer
 - Giving the means for (independent) replication

Scientific writing (in a slide)

 Scientific writing is the technical writing used to communicate your work to others

Scientific communication requires clarity and concision

 Scientific writing should address a research question, hypotheses, experiments, results and discussion

Clarity & concision

Clarity

- Does it make sense to the reader?
- Use precise words and sentences
 - There should be no room for ambiguities
 - Be objective!

Concision

- A wordy sentence is a confusing sentence
- A picture is sometimes worth a thousand words
- Meeting page quotas is not beneficial to anyone

Scientific writing (in a slide)

 Scientific writing is the technical writing used to communicate your work to others

Scientific communication requires clarity and concision

 Scientific writing should address a research question, hypotheses, experiments, results and discussion

Scientific writing (in another slide)

- Thoroughly understand your sources
 - And make sure your sources are peer reviewed!
 - Google Scholar can help you find and navigate sources
- Support everything with evidence, and distinguish fact from possibility
- Know your audience
- Never make your readers work harder than they have to

Writing your report

- Writing choices
 - Words
 - Sentences
- Supports
 - Lists
 - Images
 - Tables
 - **-**Code
- Structure
 - Paragraphs
 - Sections (IMRaD!)

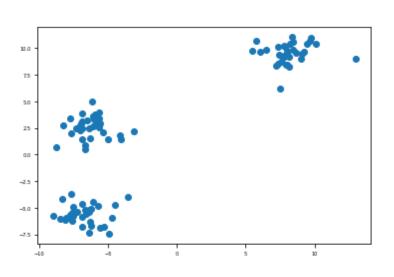
Writing choices

- Avoid needless complexity
 - No redundancy and gratuitous verbosity
 - Keep sentences short
 - One sentence ⇔ one clause (ideally!)
 - Reduce compound sentences
 - Resort to lists, images, tables
- Use formal English
 - No contracted forms
 - Wouldn't, didn't, it'll, ... → would not, did not, it will, ...
 - No informal terms (or slang!)
 - Tons of, totally, ... \rightarrow large quantities of, completely, ...
- Passive vs Active voice

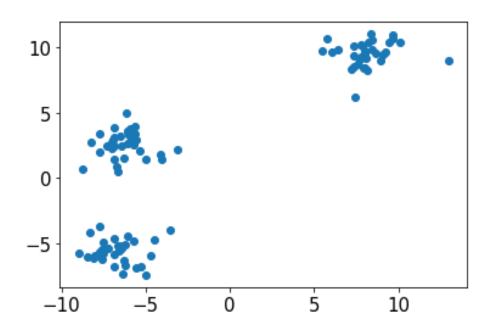
Supports (lists)

Anything that:

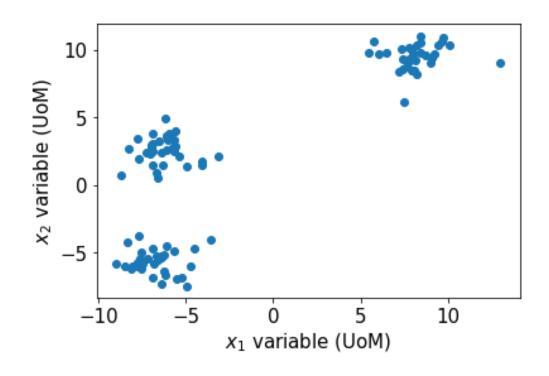
- 1. Lets you write less words
- 2. Helps you convey ideas more easily
- 3. Makes the reading experience more pleasing


Lists can be a great way of achieving 1, 2 and 3

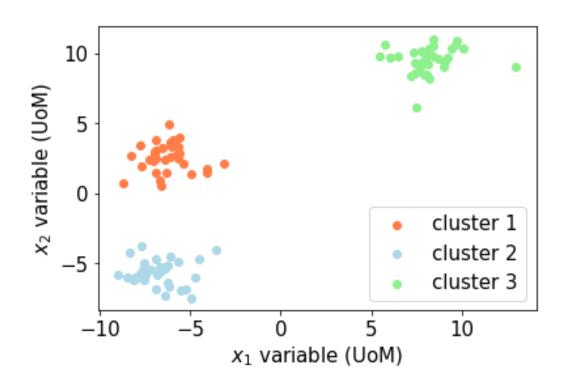
A support can be anything that can help you achieve one (or more) of the following three goals. One, it lets you write less words, because it is structured in a way that forces the adoption of few (or no) words. Second, it helps convey an idea more easily, because sometimes giving a few key concepts and letting the reader figure out the rest is better than explaining every single aspect of something in an overly verbose (and a bit patronizing) way. Finally, it makes the reading experience more pleasing, avoiding walls of text that would otherwise bore the reader greatly. This is a self-evident slide, by the way.


Supports (images)

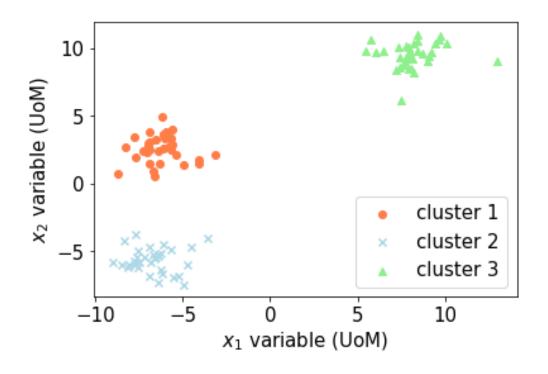
- Images (e.g. plots, diagrams) are great, if presented correctly
 - But awful, otherwise
- The figure below shows everything that can go wrong with a plot
 - Incidentally, this is what 90% of figures in reports look like



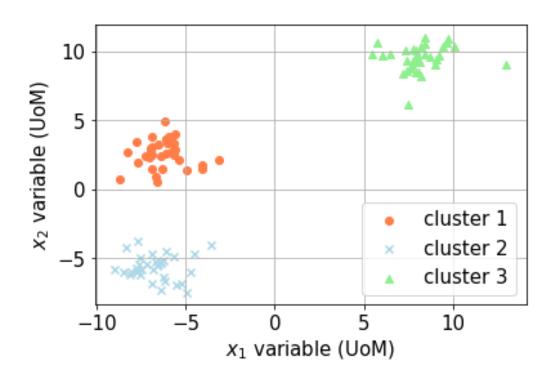
Step 1: make it readable



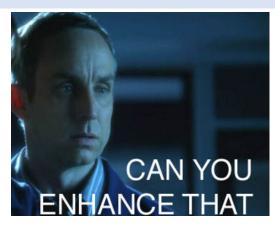
Step 2: add labels and units of measurement



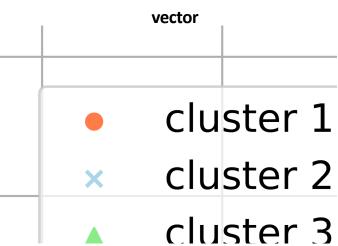
Step 3: add some colors!



Step 4: make it color blind and B/W friendly

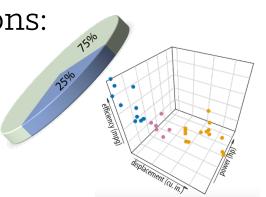


Protip 1: add a grid

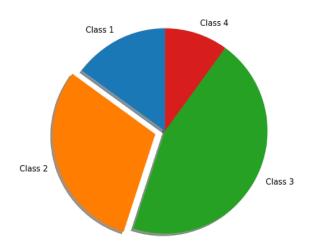


Protip 2: export vector images

I	bitmap	
•	cluster 1	
×	cluster 2	
	cluster 3	,



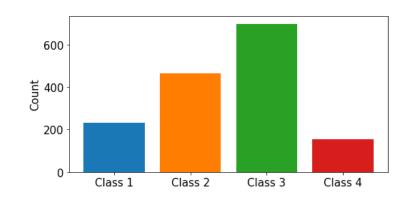
Supports (images) – cont'd


Avoid "bad" visualizations:

- Pie charts
- Gratuitous 3D plots
- •

Fundamentals of Data Visualization https://clauswilke.com/dataviz/

- One more example
 - What's wrong with this plot?
 - Short answer: everything


"Cosmetic decoration, which frequently distorts the data, will never salvage an underlying lack of content."

Long answer: these are better alternatives

Bar charts

Tables

Class	Count			
Class 1	232			
Class 2	465			
Class 3	698			
Class 4	155			

Supports (tables)

- We use tables:
 - If we want to show accurate comparisons
 - If we want to show data that is
 - Long
 - Multidimensional
 - Hierarchical
 - When it makes sense
- A nice tables generator for LaTeX (and more!)
 - https://www.tablesgenerator.com/

Category	Class	Cardinality	Color	SVM		Random Forest	
				Precision	Recall	Precision	Recall
Even	Class 2	465	Orange	0.911	0.943	0.812	0.849
	Class 4	155	Red	0.823	0.955	0.88	0.912
Odd	Class 1	232	Blue	0.815	0.901	0.873	0.987
	Class 3	698	Green	0.967	0.974	0.897	0.945

Don't forget to caption!

- Add meaningful captions to your tables/figures
- In LaTeX, stuff may get moved around
 - Caption + Content should be "self-contained"
 - Adding a caption makes it easier for the reader to follow
- Always address in the text the contents you add

Supports (code)

- Your Python code does not belong to the report
- The raw output of your Python code does not belong to the report
- Describe algorithms
 - Visually
 - With words
- There are some rare exceptions to adding code
 - If **necessary**, use pseudocode

```
PARTITION (A, p, r)
                               x = A[r]
                               i = p - 1
QUICKSORT (A, p, r)
                              for j = p, ..., r - 1
 if p < r
                               if A[i] \leq x
  q = PARTITION(A, p, r)
                                 i = i + 1
  QUICKSORT(A, p, q-1)
                                 swap A[i], A[j]
  QUICKSORT(A, q+1, r)
                                end if
 end if
                               end for
                               swap A[i+1], A[r]
                               return i + 1
```

Structure

- Paragraphs
 - One paragraph ⇔ One important concept
 - 1:N and N:1 are not effective!
- Sections IMRaD!
 - Introduction
 - Present your problem
 - Methods
 - Present your solution
 - Results, and
 - Apply your solution to your problem
 - Discussion
 - Did that work?
- + Abstract

Introduction (Problem overview)

- What problem do you have?
- Explore the data
 - What's interesting?
 - What's worth mentioning?
 - What requires careful handling?

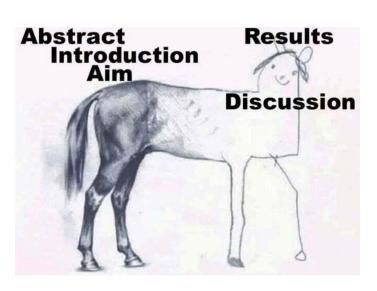
- Visual aids may be particularly useful here
 - Data distributions
 - Visualization of some points
 - Summary tables

Method (Proposed approach)

- How do you propose you solve your problem?
- Keep it structured
 - Preprocessing
 - What steps did you take to prepare the data? Why?
 - Model selection
 - What models did you use? Why?
 - Hyperparameters tuning
 - Which hyperparameters did you focus on?
 - How did you tune them?

Results

- What happens when you apply your solution to your problem?
- What configurations of Algorithms × Parameters did you select?
- Let's talk performance:
 - Validation performance
 - Public score performance
- How good is your solution?
 - Vs. random guess?
 - Vs. a naïve solution?
 - Vs. others in the leaderboard?


Discussion

- What conclusions can you draw based on what happened when you applied your solution to your problem?
- What went well?
- What could you improve?
 - Other possible approaches
 - Limitations found
- Considerations on the problem

Abstract

- 2-3 sentences that describe your work
- Should give the reader an idea of the paper
- Should be self-contained
- (hopefully) appealing
 - But avoid clickbaits!

