

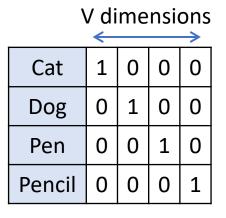
A quick introduction to word embeddings

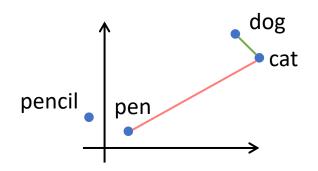
Word representations using vectors

1-of-V vectors

- Problems
 - Sparse representation
 - High-dimensional representation
 - All vectors are orthogonal
 - No semantic relationships preserved
 - Ideally, dist(cat, dog) < dist(cat, pen)

TF, TF-IDF, LSA, ...





	doc1	doc2	doc3	doc4
Cat	1.1	0	1.2	0.1
Dog	2.1	0	0	2.3
Pen	0	1.1	0	1.4
Pencil	0	2.2	0.1	0

What would a machine do?

- 3 easy steps
 - 1. Create a simple task
 - 2. Train a model to solve the task
 - 3. Steal Borrow the internal representation of the model

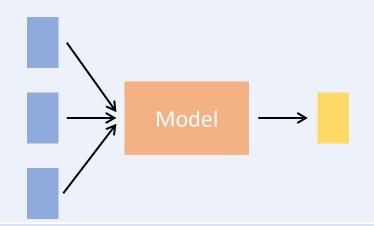
1. Create a simple task

- Step 1.1
 - Get (a lot of) data (sentences)
 - Sometimes, dogs chase their tail because...
 - When your cat holds her tail high...

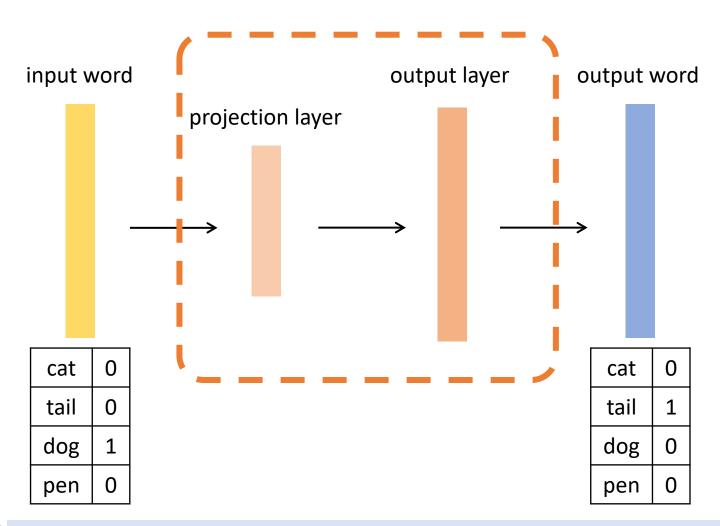
•

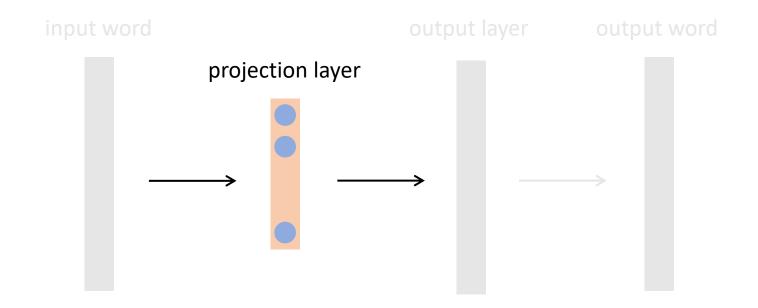
Sometimes, dogs chase their tail because...

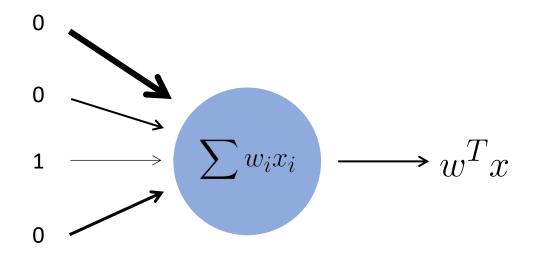
Sometimes, <blank> chase their tail because → dogs
Sometimes, dogs <blank> their tail because → chase
Sometimes, dogs chase <blank> tail because → their
Sometimes, dogs chase their <blank> because → tail
...

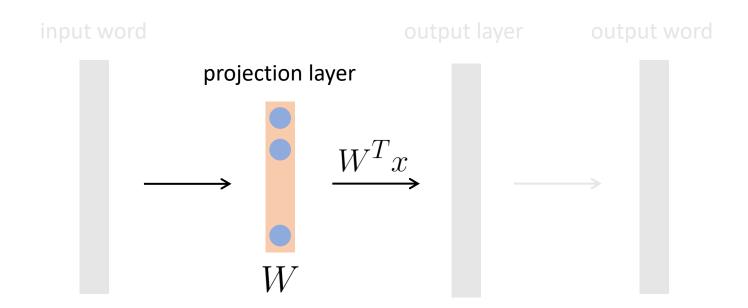


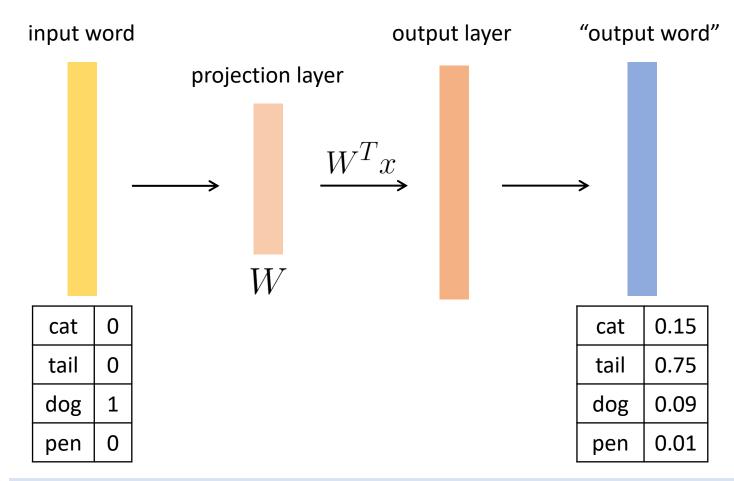
```
dogs → Sometimes, chase
       dogs → Sometimes
       dogs \rightarrow chase
chase \rightarrow dogs, their
       chase \rightarrow dogs
       chase \rightarrow their
their \rightarrow chase, tail
tail \rightarrow their, because
                                      Model
```

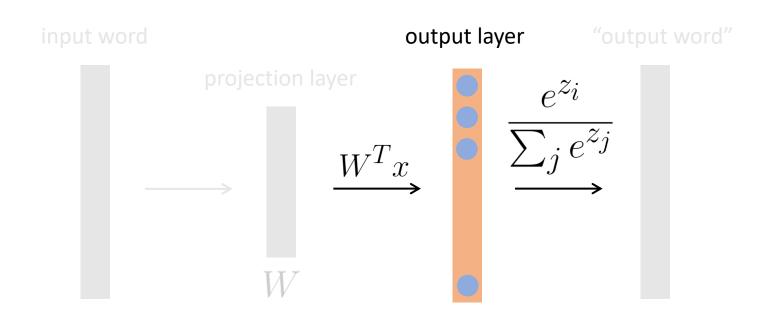







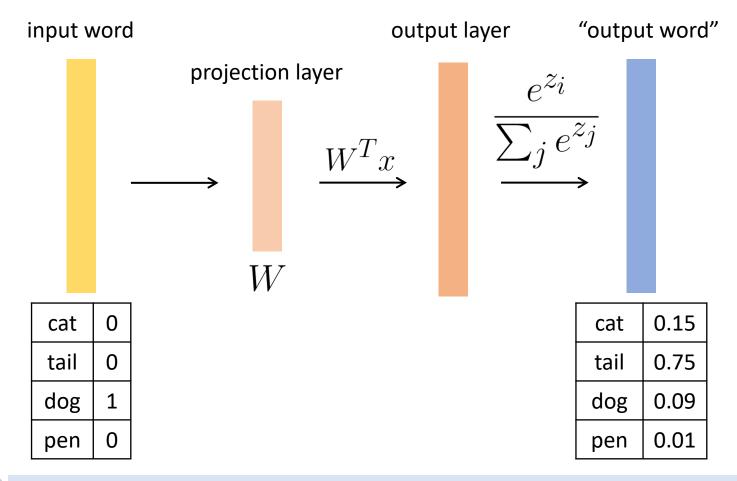






"Final" architecture

Bengio, Yoshua, et al. "A neural probabilistic language model." *Journal of machine learning research* 3.Feb (2003): 1137-1155. (sort of)



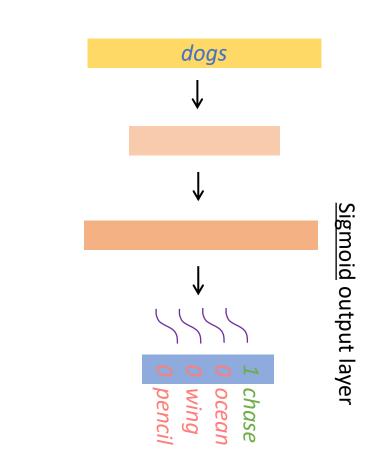
Hierarchical softmax

Negative sampling

Sigmoid output layer word_6 $\mathsf{word}_{\mathsf{5}}$ word₇ $word_8$ $word_1$ word_4

Morin, Frederic, and Yoshua Bengio. "Hierarchical probabilistic neural network language model." *Aistats*. Vol. 5. 2005.

dogs → chase, ocean, wing, pencil

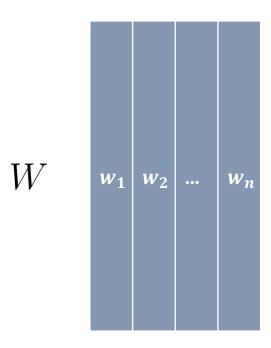


Revised architecture (word2vec)

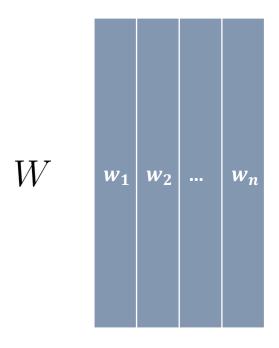
Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems* 26 (2013): 3111-3119.

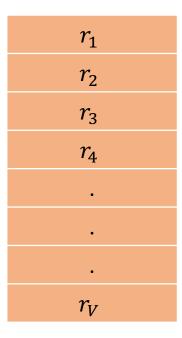


Step 3: What does W contain?



Step 3: What does W contain?





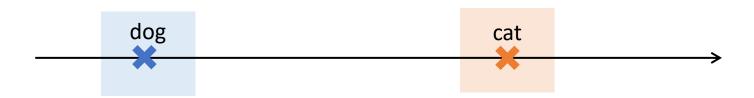
Some intuition

- How do we map cat and dog in 1D so that they both output tail?
 - (cat \rightarrow tail), (dog \rightarrow tail)

Some intuition

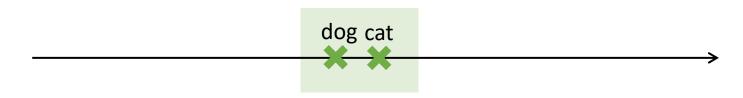
How do we map cat and dog in 1D so that they both output tail?

• (cat \rightarrow tail), (dog \rightarrow tail)



Some intuition

- How do we map cat and dog in 1D so that they both output tail?
 - (cat \rightarrow tail), (dog \rightarrow tail)



word2vec

- # king man + woman = king??

 vec_king = wv.get_vector("king")

 vec_man = wv.get_vector("king")

 vec_man = wv.get_vector("woman")

 vec_man = vv.get_vector("woman")

 [('king', 0.795573472976846)

 [('quen', 0.682980674843934)

 ('princesses', 0.5388880624843932)

 (princesses', 0.5143642736),
- 1. "king man + woman = queen"... Kind of
- 2. Huge splash in NLP world
- 3. Learns from raw text

There can be a leaner machine learning!

- 4. Pretty simple algorithm
- 5. Comes pretrained Glove fastText

