
MongoDB design
pattern

0

We are required to design a MongoDB database to store the following data about
books.

Each book is identified by the ISBN code and it is characterized by its title, subtitle, the
number of pages, the language (‘IT’, ‘EN’, ‘FR’, etc.) and the publication date.

The system is required to store the book prices (e.g., 12.34$), for each country and for
each format (e.g., ‘ebook’, ‘paperback’). Please note that book prices are searched
based on their currency (e.g., all book prices in dollars $, or pounds £), and separately
also on their amount (e.g., higher than 10.0).

Each book belongs to one or more categories (e.g., ‘fantasy’,‘classical’). Categories
are organized in a hierarchical structure (e.g., ‘children’ category includes ‘fiction’,
which includes ‘fantasy’,‘classical’, etc.).

Indicate for each collection in the database the document structure and the strategies
used for modelling.

1

Attribute pattern to track the price
according to the book format and its
country

2

book
{_id: ‘1234-5678’, // ISBN
title: ‘Book Title’,
subtitle: ‘Subtitle of the book’,
pages: 123,
lang: ‘EN’,
published: 2021-01-31
prices: [

{
format: ‘ebook’,
country: ‘UK’,
amount: 12.34,
currency: ‘£’
},
{
format: ‘paperback’,
country: ‘US’,
amount: 23.45,
currency: ‘$’
}

],
categories: [‘fantasy’,‘classical’]
ancestors: [‘fiction’, ‘children’]
}

Tree pattern to track all the ancestors
in the category hierarchy

We are required to design a MongoDB database for the management of a website
similar to AirBnb where property rental reviews from users are collected.

Each property is characterized by a name, the price per night, and its location (postal
code, city, and country). The price per night is characterized by its amount and its
currency.

Each review is characterized by the timestamp, the text of the review, the grade and the
author information, and it is related to only one property. When accessing a review,
only the name and the email of the author who wrote the review are displayed.

When accessing a property, only the top 10 most recent reviews are displayed, each
presenting only its text, grade and timestamp. Each property page reports the number
of total reviews received, and the average grade.

▪ Indicate for each collection in the database the document structure and the patterns
used for modelling.

3

Extended reference pattern for the properties, to
display the relevant information of the reviews without
joins.

4

Properties
{_id: <ObjectId>,
name: <string>,
price: { amount: <double>,

currency: <string>},
location:{

postal_code: <int>,
city: <string>,
country: <string>,
},

reviews:[// top 10 most recent
{review_id: <ObjectId>
text: <string>,
timestamp: <datetime>,
grade: <double>}

],
nReviews: <int>,
avgGrade: <double>
}

Reviews
{_id: <ObjectId>,
property_id: <ObjectId>,
text: <string>,
timestamp: <datetime>,
grade: <double>,
author: { name: <string>,

email: <string>}
}

Subset pattern to track only the most recent reviews
of each property.

Computed pattern to store the overall number of
reviews and their average grade.

We are required to design the database for the management of an insurance
application.

Each customer is characterized by the name, surname, birthdate, the contact methods
and the home address. The contact methods can be, for example, the telephone
number, the email, a Skype username, etc. The address is characterized by the street
name, street number, city, province and region.

Each insurance policy is signed by a customer and is characterized by its type, the
date of signature, and the list of included items. The included items can be modified by
the customer over time, by adding new ones or removing undesired ones.

The application should efficiently retrieve the currently active insurance data. However,
previous policy versions must be available on request.

In addition to the insurance details, it is necessary to show only the name, surname and
the contact methods of the customer.

Indicate for each collection in the database the document structure and the strategies
used for modelling.

5

Extended reference
for the customer
information 6

Insurance policy (latest version only)
{_id: <ObjectId>,
type: <string>,
date: <date>,
customer: {user: <ObjectId>,

name: <string>,
surname: <string>,
contacts: {email: <string>,

mobile: <string>,
skype: <string>}

},
items: [<string>],
version: <number>

}

Insurance_rev (previous policy versions)
{_id: < ObjectId >,
type: <string>,
date: <date>,
customer: {user: <ObjectId>,

name: <string>,
surname: <string>,
contacts: {email:<string>,

mobile: <string>}
},

items: [<string>],
version: <number>

}

Document versioning
for the updates of
insurance policies

Customer
{_id: <ObjectId>,
name: <string>,
surname: <string>,
contacts: {email: <string>,

mobile: <string>,
skype: <string>},

birthdate: <date>,
address: {

street: <string>,
number: <string>,
city: <string>,
province: <string>,
region: <string>

}

Polymorphic pattern to

track only the contact

methods that are

available

7

For further information on the content of these slides,
please refer to the book

“Design with MongoDB”

Best Models for Applications

by Alessandro Fiori

https://flowygo.com/en/projects/design-with-mongodb/

8

https://flowygo.com/en/projects/design-with-mongodb/

