How to write MapReduce
programs in Hadoop

Hadoop implementation of

MapReduce

MapReduce and Hadoop

Designers/Developers focus on the definition of
the Map and Reduce functions (i.e., mandr)
No need to manage the distributed execution of the
map, shuffle and sort, and reduce phases
The Hadoop framework coordinates the
execution of the MapReduce program

Parallel execution of the map and reduce phases
Execution of the shuffle and sort phase
Scheduling of the subtasks

Synchronization

MapReduce programs

The programming language is Java
A Hadoop MapReduce program consists of
three main parts

Driver

Mapper

Reducer
Each partis “implemented” by means of a
specific class

Terminology

Driver class

The class containing the method/code that coordinates the
configuration of the job and the “workflow” of the application

Mapper class

A class “implementing” the map function
Reducer class

A class “implementing” the reduce function
Driver

Instance of the Driver class (i.e., an object)

Mapper

Instance of the Mapper class (i.e., an object)
Reducer

Instance of the Reducer class (i.e., an object)

Terminology

(Hadoop) Job

Execution/run of a MapReduce code over a data set
Task

Execution/run of a Mapper (Map task) or a Reducer
(Reduce task) on a slice of data
Many tasks for each job
Input split
Fixed-size piece of the input data

Usually each split has approximately the same size of a HDFS
block/chunk

Driver

The Driver

Is characterized by the main() method, which
accepts arguments from the command line

i.e., it is the entry point of the application
Configures the job
Submits the job to the Hadoop Cluster
"Coordinates” the work flow of the application

Runs on the client machine
i.e., it does not run on the cluster

Mapper

The Mapper
Is an instance of the Mapper class
“Implements” the map phase

Is characterized by the map(...) method

Processes the (key, value) pairs of the input file and
emits (key, value) pairs

Is invoked one time for each input (key, value) pair

Runs on the cluster

The Reducer
Is an instance of the Reduce class

"Implements” the reduce phase

Is characterized by the reduce(...) method

Processes (key, [list of values]) pairs and emits (key,
value) pairs

Is invoked one time for each distinct key

Runs on the cluster

Hadoop implementation of the

MapReduce phases

Input key-value pairs are read from the HDFS file
system
The map method of the Mapper

Is invoked over each input key-value pair

Emits a set of intermediate key-value pairs that are
stored in the local file system of the computing server
(they are not stored in HDFS)

Intermediate results

Are aggregated by means of a shuffle and sort
procedure

A set of (key, [list of values]) pairs is generated
One (key, [list of values]) for each distinct key

Hadoop implementation of the

MapReduce phases

The reduce method of the Reduder
Is applied over each (key, [list of values]) pair

Emits a set of key-value pairs that are stored in
HDFS (the final result of the MapReduce
application)

Intermediate key-value pairs are transient:
They are not stored on the distributed files system

They are stored locally to the node producing or
processing them

Hadoop implementation of the

MapReduce phases

In order to parallelize the work/the job,
Hadoop executes a set of tasks in parallel

It instantiates one Mapper (Task) for each input

split

And a user-specified number of Reducers
Eachreducer is associated with a set of keys

It receives and processesall the key-value pairs associated with
its set of keys

Mappers and Reducers are executed on the
nodes/servers of the clusters

MapReduce data flow with a single

reducer

Splito

Split1

Split2

mapper

mapper

mapper

Output
File o

MapReduce data flow with a single

reducer

Splito

read

Split1

read

Split2

read

Output
File o

MapReduce data flow with a single

reducer

local

Splito

@Q write
mapper >

local

Split1

read write
mapper >

local

Split2

@Q write
mapper >

Output
File o

MapReduce data flow with a single

reducer

local

Splito

@Q write
mapper >

local

Split1

read write
mapper >

local

Split2

@Q write
mapper >

send data
onthe
network

Output
File o

MapReduce data flow with a single

reducer

Splito

local
Write‘

read

Split1

>

local
write

local

read

Split2

A 4

local
write

read

A

A 4

send data
onthe
network

Output
File o

MapReduce data flow with a single

reducer

Splito

local
Write‘

read

Split1

>

local
write

read

Split2

A 4

local
write

read

A

A 4

send data
onthe
network

local

rea c@ write

Output
File o

MapReduce data flow with a single

reducer

Temporary files
(local file system)

Input Data ’
(HDFS file system) N
| , \
| / \
N 2 local .- & _ \ Output Pata
: " R ! ' (HDFS file system)
: read write: ! \ |
| Splito i mapper g \ |
| " | :: FESEEM FE!!E\'/E!!E‘I
:} :: local :: I I local I :
———read writer | i | read write ;| Output | |
! Splita i mapper - | » ! /| Fileo | !
I I
! E local ! — oo oo
! iread write! u
: Split2 @ > | send data
; :: : 1 onthe

network

MapReduce data flow with multiple

reducers

Splito

local
Write‘

read

Split1

>

local
write

read

Split2

A 4

local
write

read

A

send data
onthe
network

local
rea

local

reducer

write

[

rea c@ write

Output
File o

Output
Filea

MapReduce data flow with multiple

reducers

Each key is assigned
to/managed by one reducer

local

Splito

@Q write
mapper >

local

Split1

A 4

read write

local

Split2

A

@Q write
mapper >

send data
onthe
network

local
rea

local

reducer

write

[

rea c@ write

Output
File o

Output
Filea

MapReduce data flow with multiple

reducers

Each key is assigned Potentially, all mappers send
to/managed by one reducer data (a set of (key,value) pairs)
to all reducers

|
|
|
local !
Split read mapper write M ozl
ito > .
P PP rea write Output
local reducer " Fileo

A 4

: read write
Splita mapper
local
local reac write | Output
_ read write @ File 1
Split 2 mapper >

send data
onthe
network

A

MapReduce programs - Driver

The Driver class extends the
org.apache.hadoop.conf.Configured class
and implements the
org.apache.hadoop.util.Tool interface
You can write a Driver class that does not extend
Configured and does not implement Tool

However, you need to manage some low level details
related to some command line parameters in that case

The designer/developer implements the
(...)and (...) methods

MapReduce programs - Driver

The (...) method

Configures the job
Name of the Job
Job Input format
Job Output format

Mapper class
Name of the class
Type of its input (key, value) pairs
Type of its output (key, value) pairs

24

MapReduce programs - Driver

Reducer class
Name of the class
Type of its input (key, value) pairs
Type of its output (key, value) pairs

Number of reducers

25

MapReduce programs - Mapper

The Mapper class extends the
org.apache.hadoop.mapreduce.Mapper class

The org.apache.hadoop.mapreduce.Mapper class

Is a generic type/generic class

With four type parameters: input key type, input value
type, output key type, output value type

The designer/developer implements the
(...) method

That is automatically called by the framework for
each (key, value) pair of the input file

MapReduce programs - Mapper

The (...) method

Processes its input (key, value) pairs by using
standard Java code

Emits (key, value) pairs by using the
context.write(key, value) method

MapReduce programs - Reducer

The Reducer class extends the
org.apache.hadoop.mapreduce.Reducer class

The org.apache.hadoop.mapreduce.Reducer class
Is a generic type/generic class

With four type parameters: input key type, input value type,
output key type, output value type

The designer/developer implements the
(...) methoc
That is automatically called by the framework for

each (key, [list of values]) pair obtained by
aggregating the output of the mapper(s)

MapReduce programs - Reducer

The (...) method

Processes its input (key, [list of values]) pairs by
using standard Java code

Emits (key, value) pairs by using the
context.write(key, value) method

MapReduce Data Types

Hadoop has its own basic data types

Optimized for network seria
org.apache.hadoop.io.Text:

1zation

ike Java String

org.apache.hadoop.io.IntWritable: like Java

Integer

org.apache.hadoop.io.LongWritable: like Java

Long

org.apache.hadoop.io.FloatWritable : like Java

Float
Etc

MapReduce Data Types

The basic Hadoop data types implement the
org.apache.hadoop.io.Writable and
org.apache.hadoop.io.WritableComparable
interfaces
All classes (data types) used to represent keys
are instances of WritableComparable
Keys must be "“comparable” for supporting the sort
and shuffle phase
All classes (data types) used to represent values
are instances of Writable

Usually, they are also instances of
WritableComparable even if it is not indispensable

MapReduce Data Types

Developers can define new data types by

implementing the
org.apache.hadoop.io.Writable and/or
org.apache.hadoop.io.WritableComparable

interfaces
It is useful for managing complex data types

InputFormat

The input of the MapReduce program is an
HDFS file (or an HDFS folder)

While the input of the Mapper is a set of (key,
value) pairs

The classes extending the
org.apache.hadoop.mapreduce.InputFormat
abstract class are used to read the input data
and “logically transform” the input HDFS file
in a set of (key, value) pairs

33

InputFormat

InputFormat “describes” the input-format
specification for a MapReduce application and
processes the input file(s)

The InputFormat class is used to

Read input data and validate the compliance of the
input file with the expected input-format
Split the input file(s) into logical Input Splits

Eachinput split is then assigned to an individual Mapper
Provide the RecordReader implementation to be used

to divide the logical input split in a set of (key,value)
pairs (also called records) for the mapper

34

Getting Data to the Mapper

Input (HDFS) file

VAR NN

Input Split Input Split Input Split Input Split

Input — < * < <
T
Format > > > >

Record Record Record Record

Reader Reader Reader Reader
- v v W v

Mapper Mapper Mapper Mapper

35

Getting Data to the Mapper

Input (HDFS) file

VAR NN

Input Split Input Split Input Split Input Split

Input — < * < <
T
Format > > > >

—

Record Record Record Record
Reader Reader Reader Reader
- v v W v

Mapper Mappek Mapper ‘ Mapper

Sets of (key, value)
pairs 36

Reading Data

InputFormat identifies partitions of the data
that form an input split

Each input split is a (reference to a) part of the
input file processed by a single mapper

Each splitis divided into records, and the mapper
processes one record (i.e., a (key,value) pair) at a
time

37

InputFormat

A set of predefined classes extending the
InputFormat abstract class are available for
standard input file formats
TextInputFormat
An InputFormat for plain text files
KeyValueTextInputFormat
Another InputFormat for plain text files

SequenceFilelnputFormat
An InputFormat for sequential/binary files

38

TextlnputFormat

TextInputFormat
An InputFormat for plain text files

Files are broken into lines

Either linefeed or carriage-return are used to signal end
of line

One pair (key, value) is emitted for each line of the
file

Key is the position (offset) of the line in the file

Value is the content of the line

39

TextInputFormat example

Toy example file for Hadoop.
Hadoop running example.
TextinputFormatis used to split data.

(0, “Toy example file for Hadoop.”)
(31, “Hadoop running example.”)
(56, “TextinputFormat is used to split data.”)

40

KeyValueTextInputFormat

KeyValueTextlnputFormat

An InputFormat for plain text files
Each line of the file must have the format
key<separator>value
The default separator is tab (\t)

Files are broken into lines

Either linefeed or carriage-return are used to signal end of
line

Eachline is split into key and value parts by considering the
separator symbol/character

One pair (key, value) is emitted for each line of the file
Key is the text preceding the separator
Value is the text following the separator

41

KeyValueTextinputFormat

10125\tMister John
10236\tMiss Jenny
1\tMister Donald Duck

(10125, “"Mister John")
(10236, "Miss Jenny"”)
(1, “Mister Donald Duck”)

42

OutputFormat

The classes extending the

org.apache.hadoop.mapreduce.OutputForm
at abstract class are used to write the output
of the MapReduce program in HDFS

43

OutputFormat

A set of predefined classes extending the
OutputFormat abstract class are available for
standard output file formats
TextOutputFormat
An OutputFormat for plain text files

SequenceFileOutputFormat
An OutputFormat for sequential/binary files

A

TextOutputFormat

TextOutputFormat
An OutputFormat for plain text files

For each output (key, value) pair
TextOutputFormat writes one line in the output

file
The format of each output line is
key\tvalue

45

Structure of a MapReduce

program in Hadoop

Basic structure of a MapReduce

program - Driver (1)

[* Set package */
package it.polito.bigdata.hadoop.mypackage;

[* Import libraries */
Import java.io.lOException;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

Import org.apache.hadoop.io.*;

import org.apache.hadoop. mapreduce.I|b.mput.TextInputFormat,-
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

47

Basic structure of a MapReduce

program - Driver (2)

[* Driver class */

public class MapReduceAppDriver extends

{
@Override

public int (String[] args) throws Exception {
[* variables */

int exitCode;

implements

/[Parse parameters

numberOfReducers = Integer.parselnt(args[o]);
inputPath = new Path(args[1]);
outputDir = new Path(args[2]);

48

Basic structure of a MapReduce

program - Driver (3)

/| Define and configure a new job
Configuration conf = this.getConf();
Job job = Job.getInstance(conf);

// Assign a name to the job
job.setJobName("My First MapReduce program");

49

Basic structure of a MapReduce

program - Driver (4)

/| Set path of the input file/folder (if it is a folder, the job reads all
the files in the specified folder) for this job
FilelnputFormat.addInputPath(job, inputPath);

// Set path of the output folder for this job
FileOutputFormat.setOutputPath(job, outputDir);

/| Set input format
[/ TextInputFormat = textual files
job.setInputFormatClass(Text/nputFormat.class);

// Set job output format
job.setOutputFormatClass(TextOutputFormat.class);

50

Basic structure of a MapReduce

program - Driver (5)

// Specify the class of the Driver for this job
job.setJarByClass(MapReduceAppDriver .class);

/| Set mapper class
job.setMapperClass(MyMapperClass.class);

/| Set map output key and value classes

job.setMapOutputKeyClass(output key type.class);
job.setMapOutputValueClass(output value type.class);

51

Basic structure of a MapReduce

program - Driver (6)

[/ Set reduce class
job.setReducerClass(MyReducerClass.class);

/| Set reduce output key and value classes
job.setOutputKeyClass(output key type.class);
job.setOutputValueClass(output value type.class);

/| Set number of reducers
job.setNumReduceTasks(numberOfReducers);

52

Basic structure of a MapReduce

program - Driver (7)

/| Execute the job and wait for completion
if (job.waitForCompletion(true)==true)
exitCode=0;
else
exitCode=1;
return exitCode;
} //End of the run method

53

Basic structure of a MapReduce

program - Driver (8)

/* main method of the driver class */
public static void (String args[]) throws Exception {
/* Exploit the ToolRunner class to "configure" and run the
Hadoop application */

int res =ToolRunner.run(new Configuration(),
new MapReduceAppDriver(), args);

System.exit(res);
} /| End of the main method

} /| End of public class MapReduceAppDriver

54

Basic structure of a MapReduce

program - Mapper (1)

[* Set package */
package it.polito.bigdata.hadoop.mypackage;

[* Import libraries */
import java.io.|OException;

import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.*;

55

Basic structure of a MapReduce

program - Mapper (2)

[* Mapper Class */
class myMapperClass extends <
MapperinputKeyType, |/ Input key type (must be
consistent with the InputFormat class specified in the Driver)
MapperlinputValueType, [/ Input value type (must be
consistent with the InputFormat class specified in the Driver)
MapperOutputKeyType, [/ Output key type
MapperOutputValueType> [/ Output value type

56

Basic structure of a MapReduce

program - Mapper (3)

[* Implementation of the map method */

protected void (
MapperinputKeyType key, // Input key
MapperinputValueType value, [/ Input value
Context context) throws |IOException, InterruptedException {

[* Process the input (key, value) pair and
emit a set of (key,value) pairs.
context.write(..) is used to emit (key, value) pairs
(new outputkey, new outputvalue); */
} /| End of the map method

} /] End of class myMapperClass

57

Basic structure of a MapReduce

program - Reducer (1)

[* Set package */
package it.polito.bigdata.hadoop.mypackage;

[* Import libraries */
import java.io.|OException;

import org.apache.hadoop.mapreduce.Reducer;
Import org.apache.hadoop.io.*;

58

Basic structure of a MapReduce

program - Reducer (2)

/* Reducer Class */
class myReducerClass extends <
ReducerlnputKeyType, [/ Input key type (must be
consistent with the OutputKeyType of the Mapper)
ReducerlnputValueType, [/ Input value type (must be
consistent with the OutputValueType of the Mapper)
ReducerOutputKeyType, [/ Output key type (must be
consistent with the OutputFormat class specified in the Driver)
ReducerOutputValueType> || Output value type (must
be consistent with the OutputFormat class specified in the Driver)

{

59

Basic structure of a MapReduce

program - Reducer (3)

/* Implementation of the reduce method */

protected void (
ReducerlnputKeyType key, /[Input key
lterable<ReducerinputValueType> values, /[Input values (list of
values)

Context context) throws |IOException, InterruptedException {

[* Process the input (key, [list of values]) pair and
emit a set of (key,value) pairs.
context.write(..) is used to emit (key, value) pairs
(new outputkey, new outputvalue); */
} /| End of the reduce method

} /] End of class myReducerClass
60

MapReduce programs in

Hadoop: Word Count Example

Word Count Example

Word count problem

Input: (unstructured) textual file

Each line of the input file can contains a set of words

Output: number of occurrences of each word
appearing in the input file
Parameters/arguments of the application:

args
args
args

0
1.
(2]

: number of instances of the reducer
: path of the input file
: path of the output folder

Word Count Example

' Toy example
InpUt file file for Hadoop.

Hadoop running
example.

Output pairs (toy,2)
(example, 2)
(file, 1)
(for, 1)
(hadoop, 2)
(running, 1)

63

Word Count Example - Driver (1)

[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util. ToolRunner;

64

Word Count Example - Driver (2)

[* Driver class */
public class WordCount extends Configured implements Tool §

@Override
publicint run(String[] args) throws Exception §

Path inputPath;

Path outputDir;

int numberOfReducers;
int exitCode;

/[Parse input parameters

numberOfReducers = Integer.parselnt(args[o]);
inputPath = new Path(args[1]);

outputDir = new Path(args[2]);

65

Word Count Example - Driver (3)

// Define and configure a new job
Configuration conf = this.getConf();
Job job = Job.getInstance(conf);

/| Assign a name to the job
job.setJobName("WordCounter");

66

Word Count Example - Driver (4)

// Set path of the input file/folder (if it is a folder, the job reads all the files

in the specified folder) for this job
FilelnputFormat.addinputPath(job, inputPath);

/| Set path of the output folder for this job
FileOutputFormat.setOutputPath(job, outputDir);

/| Set input format
/| TextinputFormat = textual files
job.setlnputFormatClass(TextlnputFormat.class);

// Set job output format
job.setOutputFormatClass(TextOutputFormat.class);

67

Word Count Example - Driver (5)

// Specify the class of the Driver for this job
job.setJarByClass(WordCount.class);

/| Set mapper class
job.setMapperClass(WordCountMapper.class);

/| Set map output key and value classes

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

68

Word Count Example - Driver (6)

/| Set reduce class
job.setReducerClass(WordCountReducer.class);

/| Set reduce output key and value classes
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

/| Set number of reducers
job.setNumReduceTasks(numberOfReducers);

69

Word Count Example - Driver (7)

// Execute the job and wait for completion
if (job.waitForCompletion(true)==true)
exitCode=0;
else
exitCode=1;
return exitCode;
1 /] End of the run method

70

Word Count Example - Driver (8)

/* main method of the driver class */
public static void main(String args[]) throws Exception §
/* Exploit the ToolRunner class to "configure" and run the
Hadoop application */

int res = ToolRunner.run(new Configuration(),
new WordCount(), args);

System.exit(res);
} /| End of the main method

} /] End of public class WordCount

71

Word Count Example - Mapper (1)

[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */
iImport java.io.|[OException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

72

Word Count Example - Mapper (2)

[* Mapper Class */
classWordCountMapper extends Mapper<
LongWritable, /[Input key type
Text, /[Input value type
Text, // Output key type
IntWritable> //Output value type
{
/* Implementation of the map method */
protected void map(
LongWritable key, //Input key type
Text value, // Input value type
Context context) throws IOException, InterruptedException §

73

Word Count Example - Mapper (3)

// Split each sentence in words. Use whitespace(s) as delimiter
// The split method returns an array of strings
String[] words = value.toString().split("\\s+");

/[Iterate over the set of words
for(String word : words) {
/| Transform word case
String cleanedWord = word.toLowerCase();

// emit one pair (word, 1) for each input word
context.write(new Text(cleanedWord), new IntWritable(1));

}
} /| End map method

} /| End of class WordCountMapper

74

Word Count Example - Reducer (1)

[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */
iImport java.io.|[OException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

75

Word Count Example - Reducer (2)

/* Reducer Class */
classWordCountReducer extends Reducer<

Text, // Input key type
IntWritable, // Input value type
Text, // Output key type

IntWritable> // Output value type
{
/* Implementation of the reduce method */
protected void reduce(
Text key, // Input key type
Iterable<IntWritable> values, [/ Input value type
Context context) throws IOException, InterruptedException §

76

Word Count Example - Reducer (3)

/* Implementation of the reduce method */
protected void reduce(
Text key, // Input key type
lterable<IntWritable> values, // Input value type
Context context) throws IOException, InterruptedException §
Int occurrances = o;

/| Iterate over the set of values and sum them
for (IntWritable value : values) §
occurrances = occurrances + value.get();
}
/| Emit the total number of occurrences of the current word

context.write(key, new IntWritable(occurrances));
}// End reduce method

}// End of class WordCountReducer

77

Combiner

Combiner

"Standard” MapReduce applications

The (key,value) pairs emitted by the Mappers are
sent to the Reducers through the network

Some “pre-aggregations” could be
performed to limit the amount of network
data by using Combiners (also called "mini-
reducers”)

79

Combiner —Word count example

Consider the standard word count problem
Suppose the input file is split in two input
splits
Hence, two Mappers are instantiated (one for
each split)

Word count example without

combiner

Splito
Test Hadoop
combiner.

read

Hadoop combiner.

Splita

Hadoop. Second
Split hadoop file.

read

(test, 1)
(hadoop, 1)
(combiner, 1)
(hadoop, 1)
(combiner, 1)

(hadoop, 1)
(second, 1)
(split, 1)
(hadoop, 1)
(file, 1)

send data
onthe
network

Output
File

81

Word count example with combiner

The combineris called on the output (key,
value) pairs of the mapper (it works on data stored in
the main-memory or on the local hard disks)

A

Splito (test, 1)
(hadoop, 1) (test, 1)

CT;:Z:ZOOP (combiner, 1) @ (hadoop, 2)
’ ' mapper .
Hadoop example. PP (hadoop, 1) (combiner, 2)

(combiner, 1)

Output
@ File

Splita . (hadoop, 1) (had)
rea (second, 1) adoop, 2
St e | AP —(cit) —Gombing—Cecn)/ send dta
: (split, 1)
(hadoop, 1) o ! onthe
(file, 1) W=D network

Combiner

MapReduce applications with

The (key,value) pairs emitted by the Mappers are
analyzed in main-memory (or on the local disk)
and aggregated by the Combiners

Each Combiner pre-aggregates the values associated
with the pairs emitted by the Mappers of a cluster node

Combiners perform “pre-aggregations” to limit the
amount of network data generated by each cluster node

83

Combiner

Combiners work only if the reduce function
is commutative and associative

The execution of combiners is not
guaranteed

Hadoop may or may not execute a combiner

The decision is taken at runtime by Hadoop and you
cannot check it in your code

Your MapReduce job should not depend on the
Combiner execution

84

Combiner

The Combiner

Is an instance of the
org.apache.hadoop.mapreduce.Reducer class

There is not a specific combiner-template class

"Implements” a pre-reduce phase that aggregates
the pairs emitted in each node by Mappers

Is characterized by the reduce(...) method

Processes (key, [list of values]) pairs and emits (key,
value) pairs

Runs on the cluster

85

MapReduce programs - Combiner

The Combiner class extends the
org.apache.hadoop.mapreduce.Reducer class

The org.apache.hadoop.mapreduce.Reducer class
Is a generic type/generic class

With four type parameters: input key type, input value type,
output key type, output value type

i.e., Combiners and Reducers extend the same class
The designer/developer implements the
(...) method
It is automatically called by Hadoop for each (key, [list

of values]) pair obtained by aggregating the local
output of a Mapper

86

MapReduce programs - Combiner

The Combiner class is specified by using the
job.setCombinerClass() method in the run
method of the Driver

i.e., in the job configuration part of the code

87

Word Count Example with

Combiner

Word count problem

Input: (unstructured) textual file

Each line of the input file can contains a set of words

Output: number of occurrences of each word
appearing in the input file
Parameters/arguments of the application:

args
args
args

0
1.
(2]

: number of instances of the reducer
: path of the input file
: path of the output folder

88

Word Count Example with

Combiner

: Toy example
InpUt file file for Hadoop.

Hadoop running
example.

Output pairs (toy, 1)
(example, 2)
(file, 1)
(for, 1)
(hadoop, 2)
(running, 1)

89

Word Count Example with

Combiner

Differences with the solution without
combiner

Specify the combiner class in the Driver
Define the Combiner class

The reduce method of the combiner aggregates local
pairs emitted by the mappers of a single cluster node

It emits partial results (local number of occurrencesfor each
word) from each cluster node that is used to run our application

90

Word Count Example with

Combiner - Driver (1)

[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util. ToolRunner;

91

Word Count Example with

Combiner - Driver (2)

[* Driver class */
public class WordCount extends Configured implements Tool §

@Override
publicint run(String[] args) throws Exception §

Path inputPath;

Path outputDir;

int numberOfReducers;
int exitCode;

/[Parse input parameters

numberOfReducers = Integer.parselnt(args[o]);
inputPath = new Path(args[1]);

outputDir = new Path(args[2]);

92

Word Count Example with

Combiner - Driver (3)

// Define and configure a new job
Configuration conf = this.getConf();
Job job = Job.getInstance(conf);

/| Assign a name to the job
job.setJobName("WordCounter");

93

Word Count Example with

Combiner - Driver (4)

// Set path of the input file/folder (if it is a folder, the job reads all the files

in the specified folder) for this job
FilelnputFormat.addinputPath(job, inputPath);

/| Set path of the output folder for this job
FileOutputFormat.setOutputPath(job, outputDir);

/| Set input format
/| TextinputFormat = textual files
job.setlnputFormatClass(TextlnputFormat.class);

// Set job output format
job.setOutputFormatClass(TextOutputFormat.class);

94

Word Count Example with

Combiner - Driver (5)

// Specify the class of the Driver for this job
job.setJarByClass(WordCount.class);

/| Set mapper class
job.setMapperClass(WordCountMapper.class);

/| Set map output key and value classes

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

95

Word Count Example with

Combiner - Driver (6)

/| Set reduce class
job.setReducerClass(WordCountReducer.class);

/| Set reduce output key and value classes
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

/| Set number of reducers
job.setNumReduceTasks(numberOfReducers);

/| Set combiner class
job.setCombinerClass(WordCountCombiner.class);

96

Word Count Example with

Combiner - Driver (7)

// Execute the job and wait for completion
if (job.waitForCompletion(true)==true)
exitCode=0;
else
exitCode=1;
return exitCode;
1 /] End of the run method

97

Word Count Example with

Combiner - Driver (8)

/* main method of the driver class */
public static void main(String args[]) throws Exception §
/* Exploit the ToolRunner class to "configure" and run the
Hadoop application */

int res = ToolRunner.run(new Configuration(),
new WordCount(), args);

System.exit(res);
} /| End of the main method

} /] End of public class WordCount

98

Word Count Example with

Combiner - Mapper (1)

[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */
iImport java.io.|[OException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

99

Word Count Example with

Combiner - Mapper (2)

[* Mapper Class */
classWordCountMapper extends Mapper<
LongWritable, /[Input key type
Text, /[Input value type
Text, // Output key type
IntWritable> //Output value type
{
/* Implementation of the map method */
protected void map(
LongWritable key, //Input key type
Text value, // Input value type
Context context) throws IOException, InterruptedException §

100

Word Count Example with

Combiner - Mapper (3)

// Split each sentence in words. Use whitespace(s) as delimiter
// The split method returns an array of strings
String[] words = value.toString().split("\\s+");

/[Iterate over the set of words
for(String word : words) {
/| Transform word case
String cleanedWord = word.toLowerCase();

// emit one pair (word, 1) for each input word
context.write(new Text(cleanedWord), new IntWritable(1));

}
} /| End map method

} /| End of class WordCountMapper

101

Word Count Example with

Combiner - Combiner (1)
[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */
iImport java.io.|[OException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

102

Word Count Example with

Combiner - Combiner (2)

[* Combiner Class */
classWordCountCombiner extends Reducer<

Text, // Input key type
IntWritable, // Input value type
Text, // Output key type

IntWritable> // Output value type
{
/* Implementation of the reduce method */
protected void reduce(
Text key, // Input key type
Iterable<IntWritable> values, [/ Input value type
Context context) throws IOException, InterruptedException §

103

Word Count Example with

Combiner - Combiner (3)

/* Implementation of the reduce method */
protected void reduce(
Text key, // Input key type
lterable<IntWritable> values, // Input value type
Context context) throws IOException, InterruptedException §
Int occurrances = o;

/| Iterate over the set of values and sum them
for (IntWritable value : values) §
occurrances = occurrances + value.get();
}
/| Emit the total number of occurrences of the current word

context.write(key, new IntWritable(occurrances));
} /| End reduce method
}// End of class WordCountCombiner

104

Word Count Example with

Combiner - Reducer (1)
[* Set package */
package it.polito.bigdata.hadoop.wordcount;

[* Import libraries */
iImport java.io.|[OException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

105

Word Count Example with

Combiner - Reducer (2)

/* Reducer Class */
classWordCountReducer extends Reducer<

Text, // Input key type
IntWritable, // Input value type
Text, // Output key type

IntWritable> // Output value type
{
/* Implementation of the reduce method */
protected void reduce(
Text key, // Input key type
Iterable<IntWritable> values, [/ Input value type
Context context) throws IOException, InterruptedException §

106

Word Count Example with

Combiner - Reducer (3)

/* Implementation of the reduce method */
protected void reduce(
Text key, // Input key type
lterable<IntWritable> values, // Input value type
Context context) throws IOException, InterruptedException §
Int occurrances = o;

/| Iterate over the set of values and sum them
for (IntWritable value : values) §
occurrances = occurrances + value.get();
}
/| Emit the total number of occurrences of the current word

context.write(key, new IntWritable(occurrances));
}// End reduce method

}// End of class WordCountReducer

107

Word Count Example with

Combiner

The reducer and the combiner classes perform
the same computation (the reduce method of
the two classes is the same)
We do not really need two different classes
We can simply specify that WordCountReducer is also
the combiner class

In the driver
job.setCombinerClass(WordCountReducer.class);

In 99% of the Hadoop applications the same class can
be used to implement both combiner and reducer

Personalized Data Types

Personalized Data Types and Values

Personalized Data Types are useful when the
value of a key-value pair is a complex data type
Personalized Data Types are defined by
implementing the
org.apache.hadoop.io.Writable interface

The following methods must be implemented

public void readFields(Datalnput in)
public void write(DataOutput out)

To properly format the output of the job usually also
the following method is “redefined”

public String toString()

Personalized Data Types - Example

Suppose to be interested in "“complex” values
composed of two parts:
a counter (int)

a sum (float)
An ad-hoc Data Type can be used to
implement this complex data type in Hadoop

Personalized Data Types - Example

(1)

package it.polito.bigdata.hadoop.combinerexample;
Import java.io.Datalnput;

import java.io.DataOutput;

Import java.io.|OException;

public class SumAndCountWritable implements
org.apache.hadoop.io.Writable §
/* Private variables */
private float sum = o;
private int count = o;

112

Personalized Data Types - Example

(2)

/[* Methods to get and set private variables of the class */
public float getSum() {

return sum;
5

public void setSum(float sumValue) §
sum=sumValue;
}

publicint getCount() {
return count;
5

public void setCount(int countValue) {
count=countValue;
}

113

Personalized Data Types - Example

(3)

[* Methods to serialize and deserialize the contents of the
instances of this class */
@Override [* Serialize the fields of this object to out */

public void write(DataOutput out) throws IOException §
out.writeFloat(sum);

out.writelnt(count);

5

@0Override /* Deserialize the fields of this object from in */

public void readFields(Datalnput in) throws IOException §
sum=in.readFloat();

count=in.readInt();

114

Personalized Data Types - Example

(4)

[* Specify how to convert the contents of the instances of this
classto a String

* Useful to specify how to store/write the content of this class
* in a textual file */

public String toString()

!
String formattedString=

new String("sum="+sum+",count="+count);

return formattedString;

115

Personalized Data Types and Keys

Personalized Data Types can be used also to
manage complex keys
In that case the Personalized Data Type must
implement the org.apache.hadoop.io.
WritableComparable interface
Because keys must be compared/sorted
Implement the compareTo() method
And splitin groups
Implement the hashCode() method

Sharing parameters among

Driver, Mappers, and Reducers

Sharing parameters among Driver,

Mappers, and Reducers

The configuration object is used to share the
(basic) configuration of the Hadoop
environment across the driver, the mappers
and the reducers of the application/job

It stores a list of (property-name, property-
value) pairs

Personalized (property-name, property-
value) pairs can be specified in the driver

They can be used to share some parameters of
the application with mappers and reducers

Sharing parameters among Driver,

Mappers, and Reducers

Personalized (property-name, property-
value) pairs are useful to shared small
() properties that are available only

during the execution of the program
The driver set them
Mappers and Reducers can access them

Their values

Sharing parameters among Driver,

Mappers, and Reducers

In the driver

Configuration conf = this.getConf();
Retrieve the configuration object

conf.set("property-name",
Set personalized properties

In the Mapper and/or Reducer

value");

context.getConfiguration().get("property-name")

This method returns a String containing the value of the
specified property

Counters

Counters

Hadoop provides a set of basic, built-in,
counters to store some statistics about jobs,
mappers, reducers

E.g., number of input and output records (i.e.,

pairs)

E.g., number of transmitted bytes
Ad-hoc, user-defined, counters can be
defined to compute global “statistics”
associated with the goal of the application

User-defined Counters

User-defined counters

Are defined by means of Java enum

Each application can define an arbitrary number of
enums

Are incremented in the Mappers and Reducers

The global/final value of each counter is available
a the end of the job

It is stored/printed by the Driver (at the end of the
execution of the job)

123

User-defined Counters

The name of the enum is the group name

Each enum as a number of “fields”
The enum’s fields are the counter names
In mappers and/or reduces counters are

incremented by using the increment()
method

context.getCounter(countername).increment(val
ve);

User-defined Counters

The getCounters() and findCounter()
methods are used by the Driver to retrieve
the final values of the counters

User-defined Dynamic Counters

User-defined counters can be also defined on
the fly

By using the method incrCounter(*group name”,
“counter name”, value)
Dynamic counters are useful when the set of

counters is unknown at design time

Example of user-defined counters

In the driver

public staticenum COUNTERS {
ERROR_COUNT,
MISSING_FIELDS_RECORD_COUNT

5

This enum defines two counters
COUNTERS.ERROR_COUNT
COUNTERS.MISSING_FIELDS _RECORD_COUNT

Example of user-defined counters

This example increments the
COUNTERS.ERROR_COUNT counter

In the mapper or the reducer

context.getCounter(COUNTERS.ERROR_COUN
T).increment(a);

Example of user-defined counters

This example retrieves the final value of the
COUNTERS.ERROR_COUNT counter

In the driver

Counter errorCounter =

job.getCounters().findCounter(COUNTERS.ERROR
_COUNT);

Map-only job

Map-only job

In some applications all the work can be
performed by the mapper(s)

E.g., record filtering applications
Hadoop allows executing Map-only jobs

The reduce phase is avoided
Also the shuffle and sort phase is not executed

The output of the map job is directly stored in
HDFS

i.e., the set of pairs emitted by the map phase is already
the final output

Map-only job

Implementation of a Map-only job
Implement the map method

Set the number of reducers to o during the
configuration of the job (in the driver)

job.setNumReduceTasks(0);

In-Mapper combiner

Setup and cleanup method

Mapper classes are also characterized by a setup

and

The

a cleanup method

They are empty if they are not overridden

methoc
prior to the many calls of the map

method
It can be used to set the values of in-mapper variables

In

-mapper variables are used to maintain in-mapper

statistics and preserve the state (locally for each

m

apper) within and across calls to the map method

134

Setup and cleanup method

The map method, invoked many times,
updates the value of the in-mapper variables

(each instance of the mapper class)

The method
after the many calls to the map
method

It can be used to emit (key,value) pairs based on
the values of the in-mapper variables/statistics

135

Setup and cleanup method

Also the reducer classes are characterized by
a setup and a cleanup method

The method

prior to the many calls of the reduce
method
The method

after the many calls of the reduce
method

136

In-Mapper Combiners

In-Mapper Combiners, a possible
improvement over “standard” Combiners
Initialize a set of in-mapper variables during the

instance of the Mapper
Initialize them in the setup method of the mapper

Update the in-mapper variables/statistics in the
map method

Usually, no (key,value) pairs are emitted in the map
method of an in-mapper combiner

137

In-Map

per Combiners

After al
ofama

the input records (input (key, value) pairs)
oper have been analyzed by the map

method, emit the output (key, value) pairs of the
mapper

(key, value) pairs are emitted in the cleanup method of
the mapper based on the values of the in-mapper

variabl

es

138

In-Mapper Combiners

The in-mapper variables are used to perform
the work of the combiner in the mapper
It can allow improving the overall performance of

the application
But to the amount of

Each mapper can use a limited amount of main-memory

Hence, should be (at least
smaller than the maximum amount of memory assigned

to each mapper)

139

In-Mapper Combiner —Word count

Pseudo code

class MAPPER
method setup
A «— new AssociativeArray

method map(offset key, line)
for all word w € line | do
Afw} — Afw} + 1

method cleanup
forall word w € Ado
EMIT(term w, count Afw})

In-Mapper Combiner —Word count

Pseudo code

class MAPPER
method setup
A «— new AssociativeArray

method map(offset key, line)
for all word w € line | do
Afw} — Afw} + 1

method cleanup
forall word w € Ado
EMIT(term w, count Afw})

Invoked
for each mapper

Invoked
for each mapper

In-Mapper Combiner —Word count

Pseudo code

class MAPPER
method setup
A «— new AssociativeArray

method map(offset key, line)
for all word w € line | do
Afw} — Afw} + 1

method cleanup
forall word w € Ado
EMIT(term w, count Afw})

Invoked
for each mapper

Invoked
for each
mapper

Invoked
for each mapper

