
A Gradient Boosting approach to Regression with
Qualitative Predictors and Textual Data

Salvatore Alessandro Chiruzzi
Politecnico di Torino

Student id: s283677
s283677@studenti.polito.it

Abstract—In this report we propose a possible method to

address the problem of predicting a numerical target variable

starting from categorical predictors and textual data. We show

that the proposed approach, based on gradient boosting, per-

forms significantly better than the random forest used as baseline.

I. PROBLEM OVERVIEW

The objective of the competition was to predict the numeri-
cal quality score assigned to a wine in a range between 0 and
100. The data set provided consists of two different parts:

• A development set of 120,744 objects characterised by
the numerical target, a review and a set of categorical
features, containing information about the characteristics
of the wine (designation and variety) and the producer
(country, province, region 1, region 2 and winery).

• An evaluation set of 30,186 data points with the same
structure of the development set, except for the numerical
target.

The original development set contains 35,716 duplicate

objects. In this context the presence of duplicates is an
artefact probably consequent to the merger of data coming
from different sources, rather than an indication of frequently
occurring patterns. Duplicates are a significative fraction of
the development set and this may severely bias our model.
For this reason we decide to discard them from our analysis
keeping only the first occurrence of each object.

According to a preliminary inspection, summarised in table
I, some features have a very large number of unique and/or
missing values. The presence of missing values is a major
problem for many regression models, while the high cardi-
nality of the domain for some of the categorical attributes
may lead to a very large and sparse feature matrix (more than
44,000 columns with one-hot encoding).

To address these two problems, we may try to consider only
features with relatively few missing and unique values (i.e.
country, province, and variety). On the other hand, we have
already discarded roughly the 30% of the original records in
the duplicates pruning step. This approach would reduce even
more the amount of training data, leading to a model with
very poor generalisation capabilities. Moreover, some of the
discarded features may be very useful to discriminate high
quality wines from low quality ones.

For instance, Figure 1 illustrates how the wine quality is
distributed among the top 5 frequent countries and wineries.

TABLE I
UNIQUE AND MISSING VALUES IN DEVELOPMENT SET

Feature # unique values # missing values

country 48 3
designation 27,800 25,944
province 444 3
region 1 1,206 13,889
region 2 18 50,734
variety 603 0
winery 14,105 0

Intuitively, we can notice that all the wines produced by
a single winery tend to range in a relatively small quality
band, while wines produced in a given country have a more
evenly distributed quality. In other words, the quality of
wines produced by each winery has a small variance, a the
interquartile ranges of two different wineries are often non-
overlapped. Conversely, the wine quality of each country has
an higher variance. This trend is clearly visible on the entire
data set and not only on the top-5 frequent attribute values.

This means that the winery field might be an effective
predictor of our target variable. We can observe a similar
behavior also for other features (region 1, region 2, variety and
designation). In section IV we will show how this intuition
turned out to be very accurate using the feature importance
metrics produced by our model. In section II we propose a
possible approach to efficiently handle these high-cardinality
features, and extract useful information even in presence of
missing values.

Fig. 1. Wine quality distribution in top 5 frequent countries and wineries

II. PROPOSED APPROACH

In order to retain all the information contained in the data set
without using thousands of dummy binary variables, we decide
to encode each tuple (country, province, region 1, region 2,

winery) with the corresponding latitude and longitude. To
retrieve the coordinates we can make use of the APIs provided
by services such as OpenStreetMap or Google Maps. We send
a request to the API using the string obtained by concatenating
all the elements of each tuple. Note that this solution can easily
handle missing values. If one of the fields (e.g. region 2) is
not available in the object, we simply do not include it in
the request. We notice that OpenStreetMap does not return
any coordinates for 30% of our requests. This is because
some provinces in the data set do not actually correspond
to real administrative regions (e.g. ’Central Italy’ or ’Sicily
& Sardinia’). On the other hand, Google Maps returns the
coordinates even when the request is not completely clear,
by providing the result with maximum likelihood. Visually
inspecting the result, we can notice that in roughly 5% of the
requests, Google Maps returned a completely wrong answer
(e.g. some wineries in France or Italy are encoded with
coordinates corresponding to the US soil, and vice-versa).
Even if this adds noise to our data set, we decide to keep
using this solution.

An alternative way to not discard any information while
avoiding a high-dimensional representation, is to use a tree-
based model that can make use of categorical data. Regression
trees can deal efficiently with mixed predictors (qualitative
and quantitative) and elegantly handle missing data through
surrogate splits. However, their performance are often poor
with complex data sets, they are subject to high variance
and are naturally inclined toward overfitting [1]. To avoid
these drawbacks we can use a tree-based ensemble model
that averages the prediction of multiple shallow trees. In the
following steps we will discuss the preprocessing steps and
the results obtained with a standard random forest (used as
base-line reference) and a gradient boosting regressor.

A. Preprocessing

We first focus on the data preparation steps needed for
textual data. Each review is first transformed with a common
preprocessing pipeline involving lower casing, removal of
punctuations/stop-words, stemming and tokenization. After
these standard steps, we compose a word presence binary
matrix that simply indicates whether a word is present or
not inside a review. Even if this approach may seem naı̈ve,
there are many empirical results showing its effectiveness for
traditional sentiment analysis solutions [2]. With this method
we have transformed the original set of reviews into a dataset
with roughly 28,903 binary features (one for each unique word
in the collection of documents). To reduce the dimensionality
we decide to keep only the 1000 words most positively or
negatively correlated with the target, according to the word

TABLE II
TOP 10 POSITIVELY AND NEGATIVELY CORRELATED WORDS

Positive Negative

1.80 tannis -1.00 flavors
1.45 years -0.95 aromas
1.19 rich -0.82 finish
1.18 wine -0.80 citrus
1.12 black -0.78 palate
0.87 oak -0.78 fresh
0.78 ripe -0.72 clean
0.77 cherry -0.72 apple
0.75 drink -0.63 nose
0.70 cabernet -0.62 light

score correlation metric described in [3]:

corr(t,D) =
1

|D|
X

d2D

"
I(t, d) ·

q(d)� 1

|D|
X

d02D

q(d0)

!#

where q(d) is the quality score associated with review d, D
is the collection of documents, and I(t, d) is an indicator
function whose value is 1 if d contains the term t and �1
otherwise. If corr(t,D) > 0, term t tend to appear more
frequently in documents with above average quality, while
if corr(t,D) < 0, term t is associated with below average
quality reviews. Note that 1

|D|
P

d02D q(d0) is the average
quality score. This metric implicitly penalizes words that occur
both too rarely or too frequently to be useful for training.

Table II shows the top 10 positively and negatively corre-
lated terms over the entire collection of reviews.

Fig. 2. Word importance according to total number of splits

To verify the effectiveness of this words selection method,
we can train an unoptimized version of the the model (de-
scribed in paragraph B) using the word presence matrix as
features, and inspect the resulting feature importance. Figure
2 shows that words with a strong correlation score (close to
1 or -1) listed in table II are likely to produce a high number
of splits, and consequently a high overall gain.

The preprocessing of categorical features for tree-based
methods do not usually requires complex steps. The selected
implementation of the gradient boosting regressor only needs

each category to be encoded with a different integer (-1 for
missing values). This step do not increase the dimensionality
of the dataset. The random forest regressor, requires additional
steps, since each categorical feature has to be one-hot encoded.
We then estimate the singular value decomposition with a
truncated SVD (a method that can efficiently process large
and sparse matrices and return an approximated SVD). We
decide to keep the first 5300 components that explains more
than 80% of the variance.

Numerical features (i.e. coordinates) can be used without
any further preprocessing for both methods.

B. Model selection

We will now discuss more in depth the two models proposed
for the regression task:

• Gradient boosting machines (GBM) are tree-based en-
semble models that can be used both for classification
and regression tasks. Each base model is trained on a
bootstrapped version of the original data set, and produces
splits only on a fraction of the original features. The main
difference between GBMs and other tree-based methods
is that the base models are not i.i.d.. Trees are grown
sequentially, using information from previous iteration.
Each base model is fit on a reweighted version of the
training data set. Using this weighting (i.e. learning rare
or shrinkage factor) we fit a tree using the current resid-
uals, rather than the target variable [1]. In other words,
at each iteration GBMs try to improve the performance
on region of the dataset in which previous models are
deficient.

• Random Forests are a tree-based ensemble method as
well. Anyway, in this case the weak trees can be grown
in parallel because the model do not learn from previous
errors. Instead it relies entirely on the assumption of
mutual decorrelation between base model.

Among the available libraries providing an implementation
of gradient boosting regressors, LightGBM [4] proved to be
very effective for general sentiment analysis on short texts [5].
Moreover, LightGBM performs extremely well with integer-
encoded categorical features, applying Fisher (1958) [6] to
find the optimal split over categories. Moreover, performance
are not affected by missing values.

C. Hyperparameters tuning

For tuning our models we first need to split the development
data set. We decide to keep 80% of the observations in the
training set, and use the remaining 20% for the test set. For
the training of the gradient boosting regressor we also need a
small validation set (extracted from the training set), on which
at each iteration we evaluate the performance of the model.

To optimized our baseline model (random forest) we have
performed a simple grid search considering different combina-
tions of parameters. The search space is summarized in table
III.

The main drawback of GBMs is the very large number
of hyperparameters to be tuned. Approaching this problem

TABLE III
GRID SEARCH PARAMETERS FOR THE RANDOM FOREST

Parameters Values

n estimators 500, 750, 1000
max features sqrt, log2

criterion mse, mae
min sample leaf 20, 40, 60

TABLE IV
HYPERPARAMETERS SELECTED FOR LIGHTGBM REGRESSOR

Parameter Value Parameter Value

boosting type gbdt bagging freq 5
learning rate 0.1 n estimators 3000
metric poisson min child samples 20
num leaves 255 lambda l1 9.455
feature fraction 0.42 lambda l2 1.158·10�8

bagging fraction 1.00 feature pre filter False

with a standard grid search is computationally prohibitive.
Optuna [7] is an hyperparameter optimization framework that
efficiently search large spaces and prune unpromising trials
with a stochastic approach. We first run a tuning round with
a K-fold cross validation strategy (K=3). The tuner returns a
dictionary containing the initial suggested parameters. We then
iterate the optimization process, each time selecting a narrower
set of parameters to be optimized. The hyperparameter tuning
of the GBM is, by far, the most computationally expensive
step in the entire process.

We evaluate each configuration on the test set using the R2

score, both for the RF and the GBM.

Fig. 3. GBM Feature Importance - Total Gain

III. RESULTS

We will now compare the results obtained with the two
model, using the hyperparameter discussed in the previous
section

• The best combination of parameters found for the ran-

dom forest is {n estimators=1000, max features=sqrt,
criterion=mse, min sample leaf = 40}. With this con-
figuration we obtain R2 = 0.673 on the test set, and

R2 = 0.645 on the public evaluation set. We might
consider to perform a deeper search to further optimize
the this model. Anyway, since we are considering it only
as a baseline, the score obtained is more than satisfactory.

• The configuration producing the best result for the gra-

dient boosting machine is shown in table IV. With this
set of hyperparameters we obtain R2 = 0.871 on the test
set, and R2 = 0.866 on the public evaluation set.

IV. DISCUSSION

The results obtained show that the gradient boosting ma-
chine outperforms the random forest approach, even if it
requires a considerable effort in the hyperparameters tuning
step. The GBM’s capability of dealing with categorical data
without any encoding, and effectively manage missing data,
was crucial for the quality of our result.

Figures 3 and 4 show the feature importance for the GBM
regressor. This result confirms our initial assumptions. Even
if the attributes region 1 and designation have many missing
values, they carry a relevant amount of information, hence they
produce a substantial fraction of the total splits. Discarding
these features from the analysis would dramatically reduce the
capacity of our model. Also the attribute winery, extensively
discussed in section I, has major importance in the regression
process.

We notice that the additional information on the coordinates
retrieved with the Google API, are frequently used to produce
splits in the weak trees composing the ensemble.

We have also confirmed that the correlation-based word se-
lection method, introduced in [3], can be effectively exploited
in similar use cases to reduce the dimensionality by pruning
words that are irrelevant for the analysis.

Fig. 4. GBM Feature Importance - Total Splits

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. Springer New York, 2009.
[2] C. C. Aggarwal, Machine Learning for Text. Springer Publishing

Company, Incorporated, 1st ed., 2018.
[3] A. Drake, E. Ringger, and D. Ventura, “Sentiment regression: Using real-

valued scores to summarize overall document sentiment,” in 2008 IEEE

International Conference on Semantic Computing, pp. 152–157, 2008.

[4] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision
tree,” in Advances in Neural Information Processing Systems (I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, pp. 3146–3154, Curran Associates, Inc., 2017.

[5] F. Alzamzami, M. Hoda, and A. E. Saddik, “Light gradient boosting
machine for general sentiment classification on short texts: A comparative
evaluation,” IEEE Access, vol. 8, pp. 101840–101858, 2020.

[6] W. D. Fisher, “On grouping for maximum homogeneity,” Journal of the

American Statistical Association, vol. 53, no. 284, pp. 789–798, 1958.
[7] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A

next-generation hyperparameter optimization framework,” in Proceedings

of the 25rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2019.

