
Wine Quality Dataset Regression Problem
XXXXX

Politecnico di Torino
Student id: XXXXX

XXXXX@studenti.polito.it

Abstract—This report takes wine quality evaluation as the
research object and explores the relationship between different
kind of factors and wine quality. Standard Data Science skills are
used to clean, visualize and interpret data. Our analysis shows
a correlation between wine quality and the winery and identifies
which words are the most significant in wine reviews.

I. PROBLEM OVERVIEW

The aim of this work is to analyze a dataset which contains
wine reviews, the rating of the wine and other relevant
information.

The goal is, therefore, to identify which features are the
most indicative of a good wine quality and build a regression
model capable of detecting the rating, measured as an integer
between 0 and 100 (see figure 1).
The dataset is divided into two parts:

• a development set, containing 120441 observations for
which the score of the wine is provided;

• an evaluation set, comprised of 30186 observations.

The development and the evaluation sets only differ for one
column: quality, our target column.
If we take a look at the development set, we can notice there
are more than 30k duplicate data; particularly, if we decide to
remove them from our analysis, the number of development
records will drop to 84810. In our case, the presence of
duplicate records sounds quite unusual because this assumes
the presence of perfectly identical reviews. This fact could,
for example, be caused by merging datasets from different
resources. We will deal with this issue later on and we will
decide whether to remove these observations or not.

Fig. 1: Boxplot of Quality (Dev. set)

Fig. 2: Most 15 frequent countries

Fig. 3: Boxplot of number of words of reviews

Fig. 4: WordCloud of reviews

Fig. 5: Boxplot Variety-Quality (Dev. set)

Fig. 6: Distribution of Average Quality of the Variety (Dev.
set)

Fig. 7: Distribution of Average Quality of the Winery (Dev.
set)

II. PROPOSED APPROACH

A. Preprocessing
Data preprocessing is an important step in the data mining

process.

First, we looked for outliers by means of z-scores. The higher
the score, the higher the probability that one observation is an
outlier. We considered as outliers observations whose z-score
(with respect to the variable ’quality’) lies outside the interval
[-3,3] (for further details, see [1]). In this way, we dropped
303 observations from development set.
Now, we can take a look at the columns that comprise our
data and make some considerations based on it:

• Country. There are 48 different countries in the dataset,
but, as we can see from figure 2, there are much more
frequent countries than others. It was reasonable to re-
name the least frequent categories by ”other”, while we
considered the most frequent 14 countries separately (
and converted them into dummy variables).

• Description. This column contains the wine review. From
figure 3, we can see that the reviews have different
lengths; the shortest ones are 3 word long (e.g. ’’Sweet
and fruity’), while the longest one has 135 words.
We created a numeric feature, that keeps information
about the length of the description. We also processed
the textual data using sklearn’s TfidfVectorizer, which
splitted each review into tokens and removed stopwords.
We refined the stopwords set to include common but not
descriptive wine review words like ”wine” or ”palate”.
In detail, we tried 2 different weighting schemes (tf-df
and tf-idf) and several combinations of TfidfVectorizer
parameters (min df ∈ {0.1, 0.01, 0.001}, max df
∈ {0.7, 0.8, 0.9}). We also changed N, the maximum
number of words to extract, and let it vary in the range
(150-1500). However, we noticed that all these changes
did not affect much the performance, so we preferred
the most effective method in terms of memory saving
and computation time (min df = 0.8 , max df = 0.01
and N = 150). Finally, the wordcloud shown in figure 4
gives us a graphic idea of the words’ distribution.

• Designation. Since this column has more than 30k dis-
tinct values and even the most frequent value is present
in less than 0.02 % of the data, we decided to discard this
feature. Before doing this, we introduced a new binary
feature, called ’designation presence’, that takes into
account whether or not, for a given observation, we have
info about designation.

• Province. First, we dropped observations in which the
province contains missing values. This did not affect our
analysis, because the number of these observations is
negligible (only 5). Similarly to what was done for the
variable ’Country’, we decided to consider separately
only the 10 most frequent provinces, while we discarded
provinces that occur with a lower frequency than 0.02 %.

• Region1; Region2. Since these variables assume a large
number of distinct values, we considered separately only
the 10 most frequent values. Also, we introduced 3
new binary features: two of these take into account if
region1/region2 are missing values, while the last one
keeps the information about the equality, for a given

record, between region1 and region2.
• Variety. Variety is a categorical feature with 632 distinct

values. In order to reduce the number of levels of this
feature, we took a different approach with respect to the
previous variables.
Figure 5 shows the quality of wine for 4 different varieties
in the development set. The first two boxes overlap so
we may think of combining the two varieties in a single
category. This graphic method could not be used because
of the high number of categories, but we created, accord-
ing to the average quality of the variety, several macro-
categories. For this scope, we performed a quantile-based
discretization (binning into equal areas the density in
figure 6). We used the function ’pandas.qcut’ and set the
number of quantiles q = 20. For the 29 varieties that are
in the evaluation set, but not in the development set, we
provided a default class.

• Winery. For this feature, which assumes 14809 distinct
values, we used the same approach we followed for
Variety and reduced the number of categories to q = 50.
Figure 7 shows the average quality distribution of the
wineries in the development set.

Before starting preprocessing, the dataset had only 8 features.
At the end of this step, the number of features rose to 403.

B. Model selection

We tested the following algorithms:
• Random Forest. Since random forests are based on

decision trees and since decision trees work on one
feature at a time, there is no need to normalize the dataset
just yet.

The following models assume that the data they work with is
in a standard range. So the normalization of feature vectors is
very important.
• SVM. Since the dataset is very large, the algorithm

provided by sklearn.svm.SVC took too much time for
training. Therefore, we used sklearn.svm.LinearSVC that,
according to the sklearn documentation, should scale
better to large numbers of samples.

• Linear Regression. Linear Regression is a very simple
algorithm. There is no hyperparameter to tune. We per-
formed it in 2 ways: by changing the boolean parameter
fit intercept that allows us to specify if we want to include
an intercept to the model.

• Ridge Regression. It is useful to reduce the complexity
of the model and prevent overfitting. We tuned α, which
represents the regularization strength. Larger values spec-
ify stronger regularization.

• Lasso Regression. Like Ridge, it is a regularization
technique but it also performs feature selection by setting
some coefficients to zero.

C. Hyperparameters tuning

Because of the size of the dataset, using cross-validation was
too time consuming and we preferred the hold-out method in

Model Parameter Values

Random Forest
n estimators
max depth
max features

{50, 100}
{5, 50, 150, 200}
{auto, log2, sqrt}

SVM (Linear) C {0.001, 0.01, 0.1, 1}
Linear Regression fit intercept {True, False}
Ridge Regression α {0.05, 0.1, 1}
Lasso Regression α {0.1, 0.001}

TABLE I: Summary of Hyperparameters tuning

order to choose the optimal hyperparameters. We divided the
development set in training (50%), validation (25%) and test
set (15%). We used the first one to train model configurations,
the second one to to verify which model configuration is the
best one. Thus we trained the selected configuration on the
union of the training and validation sets and we finally used
the test set to compare the performance between our predictive
models. Table (I) reports a summary of this tuning phase. In
order to decrease computation time, in case of Random Forest,
we did not try all combinations of hyperparameters, but we
performed a randozimed search.

N estimators Max depth Max features MSE R2

50 5 auto 92.143 0.344
50 50 auto 29.893 0.787
50 150 log2 30.873 0.780
50 150 auto 29.076 0.793
50 200 sqrt 38.321 0.727
100 5 log2 111.474 0.206
100 50 auto 32.244 0.770
100 50 sqrt 30.695 0.781
100 150 sqrt 27.961 0.801

TABLE II: Hyperparameters tuning for Random Forest

C MSE R2

1 91.205 0.351
0.1 61.086 0.565
0.01 51.221 0.635
0.001 50.668 0.639

TABLE III: Hyperparameters tuning for SVM

Model Configuration MSE R2

Linear Regression fit intercept= True 37.627 0.732
Linear Regression fit intercept= False 37.622 0.733
Ridge Regression α= 1 100.838 0.282
Ridge Regression α= 0.1 38.321 0.727
Ridge Regression α=0.05 37.846 0.732
Lasso Regression α=0.1 143.153 0.001
Lasso Regression α=0.001 37.819 0.730

TABLE IV: Hyperparameters tuning for Linear/Ridge/Lasso
Regression

III. RESULTS

Table (II) shows that the best configuration for ran-
dom forest is { N estimators = 100, Max depth =
150, Max features = ′sqrt′ }. Also, an interesting thing is
that, for example, the improvement in R2 is remarkable when
we increased Max depth= 5 to 50, while it is negligible when

we set Max depth from 50 to 150.
As shown in table III, smaller values of C correspond to better
performances.
As we can see from table IV, including the intercept or not
is not relevant in terms of the result. Moreover, it is clear
that regularization techniques do not work well with our data.
Indeed, high alpha values correspond to a drop in performance.
As we could expect, when alpha tends to 0, the regularization
techniques have similar results to those of linear regression.
Given the results, we decided to continue the analysis with
only two models and we trained the best performing random
forest and linear regression on the union of training and
validation sets. So, we obtained,respectively, R2

rf = 0.828 and
R2

lr = 0.734 on the test set. It is clear that random forest is the
best model in terms of R2, while linear regression outperforms
all the other ones in terms of training time. At the end, we
trained the best performing random forest on all available
development data. The public score obtained is 0.826.

For comparison, we implemented 2 naive models: the for-
mer uses only features extracted from reviews as predictors
(we just increased their number from 150 to 1000) and
the latter,conversely, uses all the other variables except from
description. Their public scores are, respectively, 0.678. and
0.808. The last result is surprising, because it is not very far
from the best performance. Probably, this suggests that the
information in reviews could be exploited more effectively,
for example, by means of sentiment analysis.

IV. DISCUSSION

Random forest provides global feature importance, i.e. an
estimate of which features are important in the prediction (see
figure 8). Surprisingly, the first feature by importance is the
length of the review, while in tenth place we find the fact that
the wine has the designation or not. It is noteworthy that the
most relevant features concern the winery, so we may think
that there is a correlation between the quality of wine and the
winery that produces it.

In figure 9, we can see the words that are selected by random
forest as predictive variables. The size of the word in the figure
is proportional to his importance in the random forest. If we
analyze the content of the word cloud, we can group the words
in macro-topics, such us colors, fruits, etc.

Also, we may repeat all the previous analysis without
duplicates. For the sake of simplicity, we just ran the optimal
configuration chosen on the dataset without duplicates. As
we could expect, the performance (R2) of the algorithms
decreases (by only 0.03), probably because the training size
decreases and the risk of data overfitting increases.
A further consideration is that, looking closely at the data, we
notice that the quality value is an integer, so we modified the
output of the predictive model and rounded it to the nearest
integer. However, this change did not impact the performance.
The results obtained, however, are quite satisfactory.

REFERENCES

[1] D. Cousineau and S. Chartier, “Outliers detection and treatment: A
review,” International Journal of Psychological Research, vol. 3, 06 2010.

Fig. 8: 15 most important features selected by Random
Forest

Fig. 9: Words selected by Random Forest

	Problem overview
	Proposed approach
	Preprocessing
	Model selection
	Hyperparameters tuning

	Results
	Discussion
	References

