
1

 Input file
A1008ULQSWI006,B0017OAQIY
A100EBHBG1GF5,B0013T5YO4
A1017Y0SGBINVS,B0009F3SAK
A101F8M8DPFOM9,B005HY2BRO,B000H7MFVI
A102H88HCCJJAB,B0007A8XV6
A102ME7M2YW2P5,B000FKGT8W
A102QP2OSXRVH,B001EQ5SGU,B000EH0RTS
A102TGNH1D915Z,B000RHXKC6,B0002DHNXC,B0002DHNXC,B000XJK7UG,B00008DFK5,B000

SP1CWW,B0009YD7P2,B000SP1CWW,B00008DFK5,B0009YD7P2
A1051WAJL0HJWH,B000W5U5H6
A1052V04GOA7RV,B002GJ9JY6,B001E5E3JY,B008ZRKZSM,B002GJ9JWS
……….

 Each line contains
 a reviewer ID (AXXXXXX) and
 the list of products reviewed by her/him (BXXXXXX)

2

 Your goal is to find the top 100 pairs of
products most often reviewed (and so
bought) together

 We consider two products as reviewed (i.e.,
bought) together if they appear in the same
line of the input file

3

 At least three different “approaches” can be
used to solve Ex. 1 of Lab 2

4

1. A chain of two MapReduce jobs is used

 The first job computes the number of
occurrences of each pair of products that occur
together in at least one line of the input file

▪ It is like a word count where each “word” is a pair of
products

 The second job, selects the top-k pairs of
products, in terms of num. of occurrences,
among the pairs emitted by the first job

▪ It implements the top-k pattern

 5

 The first job computes the number of
occurrences of each pair of products
analyzing the input file

6

Mapper #1

Mapper #N

Reducer #1

Reducer #M

….

(“product_x,product_y”, num. Occurrences_xy)
(“product_x,product_z”, num. Occurrences_xz)
…

(“product_y,product_z”, num. Occurrences_yz)
(“product_z,product_w”, num. Occurrences_zw)
…

….

(“product_x,product_y”, 1)
(“product_y,product_z”, 1)
…

(“product_z,product_w”, 1)
(“product_y,product_z”, 1)
…

 The second job computes the global top-k
pairs of products in terms of num. of
occurrences

7

Mapper #1

Mapper #J

Reducer #1

Global top-k list
(“product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)
…

….

Local top-k list Mapper #1
(“product_x,product_y”, num. Occurrences_xy)
…

Local top-k list Mapper #J
(“product_y,product_z”, num. Occurrences_yz)
…

2. One single MapReduce jobs is used

 The job

▪ Computes the number of occurrences of each pair of
products that occur together in at least one line of the
input file

▪ It is again like a word count where each “word” is a pair of
products

▪ However, the reducer does not emit all the pairs (pair of
products, #of occurrences) that it computes

 The top-k list is computed in the reducer and is emitted in its
cleanup method

8

▪ In the reducer, the job computes also the top-k list
▪ By initializing the top-k list in the setup method of the reducer

▪ By updating the top-k list in the reduce method (immediately
after the computation of the frequency of the current pair of
products)

▪ By emitting the final top-k list in the cleanup method of the
reducer

▪ There must be one single reducer in order to compute
the final global top-k list

9

 There is one single job that computes the
number of occurrences and the global top-k
list at the same time in its single reducer

10

Mapper #1

Mapper #N

Reducer #1 ….
Global top-k list
(“product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)
…

(“product_x,product_y”, 1)
(“product_y,product_z”, 1)
…

(“product_z,product_w”, 1)
(“product_y,product_z”, 1)
…

3. A chain of two MapReduce jobs is used

 The first job is the same job used by Solution #2

▪ However, in this case the number of reducers is set to
a value greater than one

▪ This setting allows parallelizing this intermediate step

▪ Each reducer emits a local top-k list
▪ The first job returns a number of local top-k lists equal to the

number of reducers of the first job

11

 The second job computes the final top-k list
merging the pairs of the local top-k lists emitted
by the first job

▪ It is based on the standard Top-k pattern

12

 The first job computes the number of
occurrences of each pair of products but each
reducer emits only its local top-k pairs

13

Mapper #1

Mapper #N

Reducer #1

Reducer #M

…. ….

(“product_x,product_y”, 1)
(“product_y,product_z”, 1)
…

(“product_z,product_w”, 1)
(“product_y,product_z”, 1)
…

Local top-k list Reducer #1
(“product_x,product_y”, num. Occurrences_xy)
…

Local top-k list Reducer #M
(“product_y,product_z”, num. Occurrences_yz)
…

 The second job computes the global top-k
pairs of products in terms of num. of
occurrences merging the local list of job #1

14

Mapper #1

Mapper #J

Reducer #1

Global top-k list
(“product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)
…

….

 Solution #1

 +Adopts two standard patterns

 - However, the output of the first job is very large
▪ One pair for each pair of products occurring together at least one

time in the input file

15

 Solution #2

 +Only one job is instantiated and executed (there
is only one job in Solution #2) and its output is
already the final top-k list

 - However, only one reducer is instantiated
▪ It becomes a bottleneck because one single reducer must analyze

sequentially the potentially large set of pairs emitted by the
mappers

▪ Highly inefficient

 - It is not a standard pattern

16

 Solution #3

 +Each reducer of the first job emits only the pair
contained in its local top-k lists
▪ One top-k list for each reducer

▪ The pairs of the top-k lists emitted by the reducers are
significantly smaller than all the pairs of products
occurring together at least one time

▪ Since the first job instantiates many reducers, the
parallelism is maintained

 - It is not a standard pattern

17

