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 Input file 
A1008ULQSWI006,B0017OAQIY 
A100EBHBG1GF5,B0013T5YO4 
A1017Y0SGBINVS,B0009F3SAK 
A101F8M8DPFOM9,B005HY2BRO,B000H7MFVI 
A102H88HCCJJAB,B0007A8XV6 
A102ME7M2YW2P5,B000FKGT8W 
A102QP2OSXRVH,B001EQ5SGU,B000EH0RTS 
A102TGNH1D915Z,B000RHXKC6,B0002DHNXC,B0002DHNXC,B000XJK7UG,B00008DFK5,B000

SP1CWW,B0009YD7P2,B000SP1CWW,B00008DFK5,B0009YD7P2 
A1051WAJL0HJWH,B000W5U5H6 
A1052V04GOA7RV,B002GJ9JY6,B001E5E3JY,B008ZRKZSM,B002GJ9JWS 
………. 

 Each line contains  
 a reviewer ID (AXXXXXX) and  
 the list of products reviewed by her/him (BXXXXXX)
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 Your goal is to find the top 100 pairs of 
products most often reviewed (and so 
bought) together 

 We consider two products as reviewed (i.e., 
bought) together if they appear in the same 
line of the input file 
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 At least three different “approaches” can be 
used to solve Ex. 1 of Lab 2 
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1. A chain of two MapReduce jobs is used 

 The first job computes the number of 
occurrences of each pair of products that occur 
together in at least one line of the input file 

▪ It is like a word count where each “word”  is a pair of 
products 

 The second job, selects the top-k pairs of 
products, in terms of num. of occurrences, 
among the pairs emitted by the first job 

▪ It implements the top-k pattern 
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 The first job computes the number of 
occurrences of each pair of products 
analyzing the input file 
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Mapper #1 

Mapper #N 

Reducer #1 

Reducer #M 

…. 

(“product_x,product_y”, num. Occurrences_xy) 
(“product_x,product_z”, num. Occurrences_xz) 
… 

(“product_y,product_z”, num. Occurrences_yz) 
(“product_z,product_w”, num. Occurrences_zw) 
… 

…. 

(“product_x,product_y”, 1) 
(“product_y,product_z”, 1) 
… 

(“product_z,product_w”, 1) 
(“product_y,product_z”, 1) 
… 



 The second job computes the global top-k 
pairs of products in terms of num. of 
occurrences 
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Mapper #1 

Mapper #J 

Reducer #1 

Global top-k list 
(“product_x,product_y”, num. Occurrences_xy) 
(“product_y,product_z”, num. Occurrences_yz) 
… 

…. 

Local top-k list Mapper #1 
(“product_x,product_y”, num. Occurrences_xy) 
… 

Local top-k list Mapper #J 
(“product_y,product_z”, num. Occurrences_yz) 
… 



2. One single MapReduce jobs is used 

 The job  

▪ Computes the number of occurrences of each pair of 
products that occur together in at least one line of the 
input file 

▪ It is again like a word count where each “word”  is a pair of 
products 

▪ However, the reducer does not emit all the pairs (pair of 
products, #of occurrences) that it computes 

 The top-k list is computed in the reducer and is emitted in its 
cleanup method 
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▪ In the reducer, the job computes also the top-k list 
▪ By initializing  the top-k list in the setup method of the reducer 

▪ By updating the top-k list in the reduce method (immediately 
after the computation of the frequency of the current pair of 
products) 

▪ By emitting the final top-k list in the cleanup method of the 
reducer 

▪ There must be one single reducer in order to compute 
the final global top-k list 
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 There is one single job that computes the 
number of occurrences and the global top-k 
list at the same time in its single reducer 
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Mapper #1 

Mapper #N 

Reducer #1 …. 
Global top-k list 
(“product_x,product_y”, num. Occurrences_xy) 
(“product_y,product_z”, num. Occurrences_yz) 
… 

(“product_x,product_y”, 1) 
(“product_y,product_z”, 1) 
… 

(“product_z,product_w”, 1) 
(“product_y,product_z”, 1) 
… 



3. A chain of two MapReduce jobs is used 

 The first job is the same job used by Solution #2 

▪ However, in this case the number of reducers is set to 
a value greater than one 

▪ This setting allows parallelizing this intermediate step 

▪ Each reducer emits a local top-k list  
▪ The first job returns a number of local top-k lists equal to the 

number of reducers of the first job 
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 The second job computes the final top-k list 
merging the pairs of the local top-k lists emitted 
by the first job 

▪ It is based on the standard Top-k pattern 
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 The first job computes the number of 
occurrences of each pair of products but each 
reducer emits only its local top-k pairs 
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Mapper #1 

Mapper #N 

Reducer #1 

Reducer #M 

…. …. 

(“product_x,product_y”, 1) 
(“product_y,product_z”, 1) 
… 

(“product_z,product_w”, 1) 
(“product_y,product_z”, 1) 
… 

Local top-k list Reducer #1 
(“product_x,product_y”, num. Occurrences_xy) 
… 

Local top-k list Reducer #M 
(“product_y,product_z”, num. Occurrences_yz) 
… 



 The second job computes the global top-k 
pairs of products in terms of num. of 
occurrences merging the local list of job #1 
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Mapper #1 

Mapper #J 

Reducer #1 

Global top-k list 
(“product_x,product_y”, num. Occurrences_xy) 
(“product_y,product_z”, num. Occurrences_yz) 
… 

…. 



 Solution #1 

 +Adopts two standard patterns 

 - However, the output of the first job is very large 
▪ One pair for each pair of products occurring together at least one 

time in the input file 
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 Solution #2 

 +Only one job is instantiated and executed (there 
is only one job in Solution #2) and its output is 
already the final top-k list 

 - However, only one reducer is instantiated  
▪ It becomes a bottleneck because one single reducer must analyze 

sequentially the potentially large set of pairs emitted by the 
mappers 

▪ Highly inefficient 

 - It is not a standard pattern 
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 Solution #3 

 +Each reducer of the first job emits only the pair 
contained in its local top-k lists 
▪ One top-k list for each reducer 

▪ The pairs of the top-k lists emitted by the reducers are 
significantly smaller than all the pairs of products 
occurring together at least one time 

▪ Since the first job instantiates many reducers, the 
parallelism is maintained  

 - It is not a standard pattern 
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