Lab 2 — Alternative solutions

Lab 2

Input file

A1008ULQSWIlo06,Boo170AQlY
A100EBHBG1GF5,Bo013T5YO4
A1017Y0SGBINVS,BooogF3SAK
A101F8M8DPFOMg,Boo5HY2BRO,BoooH7MFVI
A102H88HCCJJAB,Booo7A8XV6
A102ME7M2YW2P5,BoooFKGT8W
A102QP20SXRVH,Boo1EQ55SGU,BoooEHORTS

A102TGNH1Dg915Z,BoooRHXKC6,Bo002DHNXC,Boo02DHNXC,BoooXJK7UG,Boooo8DFKsg,Booo
SP1CWW,BooogYD7P2,BoooSP1CWW,Booo008DFKg5,BooogYD7P2

A1051WAJLoHJWH,BoooW5UgH6
A1052Vo04GOA7RV,B002GJ9lY6,Boo1E5E3]Y,Bo008ZRKZSM,Bo02GJg9JWS

Each line contains
a reviewer ID (AXXXXXX) and
the list of products reviewed by her/him (BXXXXXX)

Your goal is to find the top 100 pairs of
products most often reviewed (and so
bought) together

We consider two products as reviewed (i.e.,

bought) together if they appear in the same
line of the input file

Lab 2 — Ex.1: Possible solutions

At least three different “"approaches” can be
used to solve Ex. 1 of Lab 2

Lab 2 - Ex.1: Solution #1

A chain of two MapReduce jobs is used

The first job computes the number of
occurrences of each pair of products that occur
togetherin at least one line of the input file

It is like a word count where each “word” is a pair of
products

The second job, selects the top-k pairs of
products, in terms of num. of occurrences,
among the pairs emitted by the first job

It implements the top-k pattern

Lab 2 - Ex.1: Solution #1

The first job computes the number of
occurrences of each pair of products

analyzing the input file

(“product_x,product_y"”, 1)
(“product_y,product_z", 1)
Mapper #1

Reducer #1

Reducer #M

M #N
apper (“product_z,product_w", 1)

(“product_y,product_z", 1)

(“product_x,product_y”, num. Occurrences_xy)
(“product_x,product_z", num. Occurrences_xz)

(“product_y,product_z"”, num. Occurrences_yz)
(“product_z,product_w", num. Occurrences_zw)

Lab 2 - Ex.1: Solution #1

The second job computes the global top-k
pairs of products in terms of num. of
occurrences

Local top-k list Mapper #1
(“product_x,product_y"”, num. Occurrences_xy)

Mapper #1
Global top-k list
Reducer #1 | (Product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z"”, num. Occurrences_yz)
Mapper #J

Local top-k list Mapper #)J
(“product_y,product_z"”, num. Occurrences_yz)

Lab 2 - Ex.1: Solution #2

One single MapReduce jobs is used
The job

Computes the number of occurrences of each pair of
products that occur together in at least one line of the
input file
It is again like a word count where each “word” is a pair of
products

However, the reducer does not emit all the pairs (pair of
products, #of occurrences) that it computes

The top-k list is computed in the reducer and is emitted in its
cleanup method

Lab 2 - Ex.1: Solution #2

In the reducer, the job computes the top-k list
By initializing the top-k list in the setup method of the reducer

By updating the top-k list in the reduce method (immediately
after the computation of the frequency of the current pair of

products)
By emitting the final top-k list in the cleanup method of the
reducer

There must be in order to compute

the final global top-k list

Lab 2 - Ex.1: Solution #2

There is one single job that computes the
number of occurrences and the global top-k
list at the same time in its single reducer

(“product_x,product_y”, 1)
(“product_y,product_z", 1)
Mapper #1

Global top-k list
Reducer #1 (“product_x,product_y"”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)

Mapper #N (“product_z,product_w", 1)

(“product_y,product_z", 1)

10

Lab 2 — Ex.1: Solution #3

A chain of two MapReduce jobs is used

The first job is the same job used by Solution #2

However, in this case the number of reducers is set to
a value greater than one
This setting allows parallelizing this intermediate step

Each reducer emits a local top-k list

The first job returns a number of local top-k lists equal to the
number of reducers of the first job

11

Lab 2 — Ex.1: Solution #3

The second job computes the final top-k list
merging the pairs of the local top-k lists emitted
by the first job

It is based on the standard Top-k pattern

Lab 2 — Ex.1: Solution #3

The first job computes the number of
occurrences of each pair of products but each
reducer emits only its local top-k pairs

(“product_x,product_y"”, 1)
(“product_y,product_z", 1)

Mapper #1 _
Local top-k list Reducer #1
Reducer #1 (“product_x,product_y"”, num. Occurrences_xy)
Local top-k list Reducer #M
Reducer #M (“product_y,product_z"”, num. Occurrences_yz)
Mapper #N

(“product_z,product_w", 1)
(“product_y,product_z", 1)

13

Lab 2 — Ex.1: Solution #3

The second job computes the global top-k
pairs of products in terms of num. of
occurrences merging the local list of job #2

Mapper #1

Global top-k list
(“product_x,product_y"”, num. Occurrences_xy)

Reducer #1
(“product_y,product_z"”, num. Occurrences_yz)

Mapper #J

14

Lab 2 — Ex.1: Comparison of the

proposed solutions

Solution #1
Adopts two standard patterns

- However, the output of the first job is very large

One pair for each pair of products occurring together at least one
time in the input file

Lab 2 — Ex.1: Comparison of the

proposed solutions

Solution #2

Only one job is instantiated and executed (there

is only one job in Solution #2) and its output is
already the final top-k list

- However, only one reducer is instantiated

It becomes a bottleneck because one single reducer must analyze
sequentially the potentially large set of pairs emitted by the
mappers

Highly inefficient

- It is not a standard pattern

16

Lab 2 — Ex.1: Comparison of the

proposed solutions

Solution #3

Each reducer of the first job emits only the pair
contained in its local top-k lists
One top-k list for each reducer

The pairs of the top-k lists emitted by the reducers are
significantly smaller than all the pairs of products
occurring together at least one time

Since the first job instantiates many reducers, the
parallelismis maintained

- It is not a standard pattern

17

