
DB
MG

NoSQL databases

Introduction to MongoDB

DB
MG

MongoDB: Introduction

The leader in the NoSQL Document-based
databases

Full of features, beyond NoSQL

High performance

High availability

Native scalability

High flexibility

Open source

DB
MG

Terminology – Approximate mapping

Relational database MongoDB

Table Collection

Record Document

Column Field

DB
MG

MongoDB: Document Data Design

High-level, business-ready representation of the data
Records are stored into Documents

• field-value pairs

• similar to JSON objects

• may be nested

DB
MG

MongoDB: Document Data Design

High-level, business-ready representation of the data

Flexible and rich syntax, adapting to most use cases

Mapping into developer-language objects

year, month, day, timestamp,

lists, sub-documents, etc.

DB
MG

MongoDB: Main features

Rich query language

Documents can be created, read, updated and
deleted.

The SQL language is not supported

APIs available for many programming languages

JavaScript, PHP, Python, Java, C#, ..

6

DB
MG

MongoDB

Querying data using operators

DB
MG

MongoDB: query language

MySQL clause MongoDB operator

SELECT find()

SELECT *

FROM people

db.people.find()

Most of the operations available in SQL language
can be expressend in MongoDB language

DB
MG

MongoDB: Read data from documents

Select documents
db.<collection name>.find({<conditions>},

{<fields of interest>});

E.g.,

db.people.find();

Returns all documents contained in the people
collection

DB
MG

MongoDB: Read data from documents

Select documents
db.<collection name>.find({<conditions>},

{<fields of interest>});

Select the documents satisfying the specified
conditions and specifically only the fields
specified in fields of interest

<conditions> are optional

conditions take a document with the form:
{field1 : <value>, field2 : <value> ... }

Conditions may specify a value or a regular
expression

DB
MG

MongoDB: Read data from documents

Select documents
db.<collection name>.find({<conditions>},

{<fields of interest>});

Select the documents satisfying the specified
conditions and specifically only the fields
specified in fields of interest

<fields of interest> are optional

projections take a document with the form:
{field1 : <value>, field2 : <value> ... }

1/true to include the field, 0/false to exclude the
field

DB
MG

MongoDB: Read data from documents

E.g.,

db.people.find().pretty();

No conditions and no fields of interest

Returns all documents contained in the people
collection

pretty()displays the results in an easy-to-read

format

db.people.find({age:55})

One condition on the value of age

Returns all documents having age equal to 55

DB
MG

MongoDB: Read data from documents

db.people.find({ }, { user_id: 1, status: 1 })

No conditions, but returns a specific set of fields
of interest

Returns only user_id and status of all documents contained in the
people collection

Default of fields is false, except for _id

db.people.find({ status: "A", age: 55})

status = “A” and age = 55
Returns all documents having status = “A” and age = 55

DB
MG

MongoDB: find() operator

MySQL clause MongoDB operator

SELECT find()

SELECT id,

user_id,

status

FROM people

db.people.find(

{ },

{ user_id: 1,

status: 1

}

)

DB
MG

MongoDB: find() operator

MySQL clause MongoDB operator

SELECT find()

SELECT id,

user_id,

status

FROM people

db.people.find(

{ },

{ user_id: 1,

status: 1

}

)

Where Condition

Select fields

DB
MG

MongoDB: find() operator

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

SELECT *

FROM people

WHERE status = "A"

db.people.find(

{ status: "A" }

)

Where Condition

DB
MG

MongoDB: find() operator

SELECT user_id, status

FROM people

WHERE status = "A"

db.people.find(

{ status: "A" },

{ user_id: 1,

status: 1,

_id: 0

}

)

Where Condition

Selection fields

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

By default, the _id field is shown.
To remove it from visualization use: _id: 0

DB
MG

MongoDB: find() operator

MySQL clause MongoDB operator

SELECT find()

WHERE find({<WHERE CONDITIONS>})

db.people.find(

{"address.city":“Rome" }

)

nested document

{ _id: "A",

address: {

street: “Via Torino”,

number: “123/B”,

city: “Rome”,

code: “00184”

}

}

DB
MG

MongoDB: Read data from documents

db.people.find({ age: { $gt: 25, $lte: 50 } })

Age greater than 25 and less than or equal to 50
Returns all documents having age > 25 and age <= 50

db.people.find({$or:[{status: "A"},{age: 55}]})

Status = “A” or age = 55
Returns all documents having status=“A” or age=55

db.people.find({ status: {$in:["A", "B"]}})

Status = “A” or status = B
Returns all documents where the status field value is either
“A” or “B”

DB
MG

MongoDB: Read data from documents

Select a single document
db.<collection name>.findOne(

{<conditions>}, {<fields of interest>});

Select one document that satisfies the specified
query criteria.

If multiple documents satisfy the query, it returns
the first one according to the natural order which
reflects the order of documents on the disk.

DB
MG

MongoDB: (no) joins

There are other operators for selecting data from
MongoDB collections

However, no join operator exists (but $lookup)

You must write a program that

Selects the documents of the first collection you are
interested in

Iterates over the documents returned by the first
step, by using the loop statement provided by the
programming language you are using

Executes one query for each of them to retrieve the
corresponding document(s) in the other collection

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#pipe._S_lookup

DB
MG

MongoDB: (no) joins

(no) joins

Relations among documents/records are provided by

Object(ID) reference, with no native join

DBRef, across collections and databases

https://docs.mongodb.com/manual/reference/database-references/

https://docs.mongodb.com/manual/reference/database-references/

DB
MG

MongoDB: comparison operators

In SQL language, comparison operators are
essential to express conditions on data.

In Mongo query language they are available with
a different syntax.

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

!= $neq not equal to

DB
MG

MongoDB: Comparison query operators

Name Description

$eq or : Matches values that are equal to a specified value

$gt Matches values that are greater than a specified value

$gte Matches values that are greater than or equal to a
specified value

$in Matches any of the values specified in an array

$lt Matches values that are less than a specified value

$lte Matches values that are less than or equal to a specified
value

$ne Matches all values that are not equal to a specified value

$nin Matches none of the values specified in an array

DB
MG

MongoDB: comparison operators (>)

MySQL MongoDB Description

> $gt greater than

SELECT *

FROM people

WHERE age > 25

db.people.find(

{ age: { $gt: 25 } }

)

DB
MG

MongoDB: comparison operators (>=)

SELECT *

FROM people

WHERE age >= 25

db.people.find(

{ age: { $gte: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

DB
MG

MongoDB: comparison operators (<)

SELECT *

FROM people

WHERE age < 25

db.people.find(

{ age: { $lt: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

DB
MG

MongoDB: comparison operators (<=)

SELECT *

FROM people

WHERE age <= 25

db.people.find(

{ age: { $lte: 25 } }

)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

DB
MG

MongoDB: comparison operators (=)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

The $eq expression is

equivalent to

{ field: <value> }.

SELECT *

FROM people

WHERE age = 25

db.people.find(

{ age: { $eq: 25 } }

)

DB
MG

MongoDB: comparison operators (!=)

MySQL MongoDB Description

> $gt greater than

>= $gte greater equal then

< $lt less than

<= $lte less equal then

= $eq equal to

!= $neq Not equal to

SELECT *

FROM people

WHERE age != 25

db.people.find(

{ age: { $neq: 25 } }

)

DB
MG

MongoDB: conditional operators

To specify multiple conditions, conditional
operators are used

MongoDB offers the same functionalities of
MySQL with a different syntax.

MySQL MongoDB Description

AND , Both verified

OR $or At least one verified

DB
MG

MongoDB: conditional operators (AND)

MySQL MongoDB Description

AND , Both verified

SELECT *

FROM people

WHERE status = "A"

AND age = 50

db.people.find(

{ status: "A",

age: 50 }

)

DB
MG

MongoDB: conditional operators (OR)

MySQL MongoDB Description

AND , Both verified

OR $or At least one verified

SELECT *

FROM people

WHERE status = "A"

OR age = 50

db.people.find(

{ $or:

[{ status: "A" } ,

{ age: 50 }

]

}

)

DB
MG

MongoDB: Cursor

db.collection.find()gives back a cursor. It

can be used to iterate over the result or as input
for next operations.

E.g.,

cursor.sort()

cursor.count()

cursor.forEach() //shell method

cursor.limit()

cursor.max()

cursor.min()

cursor.pretty()

DB
MG

MongoDB: Cursor

Cursor examples:
db.people.find({ status: "A"}).count()

Select documents with status=“A” and count them.

db.people.find({ status: "A"}).forEach(

function(myDoc) { print("user: ”+myDoc.name);

})

forEach applies a JavaScript function to apply to

each document from the cursor.

Select documents with status=“A” and print the
document name.

DB
MG

MongoDB: sorting data

Sort is a cursor method

Sort documents
sort({<list of field:value pairs>});

field specifies which filed is used to sort the
returned documents

value = -1 descending order

Value = 1 ascending order

Multiple field: value pairs can be specified

Documents are sort based on the first field

In case of ties, the second specified field is
considered

DB
MG

MongoDB: sorting data

E.g.,
db.people.find({ status: "A"}).sort({age:1})

Select documents with status=“A” and sort them
in ascending order based on the age value

Returns all documents having status=“A”. The result
is sorted in ascending age order

DB
MG

SELECT *

FROM people

WHERE status = "A"

ORDER BY user_id ASC

db.people.find(

{ status: "A" }

).sort({ user_id: 1 })

MongoDB: sorting data

MySQL clause MongoDB operator

ORDER BY sort()

Sorting data with respect to a given field in
MongoDB: sort() operator

DB
MG

SELECT *

FROM people

WHERE status = "A"

ORDER BY user_id ASC

db.people.find(

{ status: "A" }

).sort({ user_id: 1 })

MongoDB: sorting data

MySQL clause MongoDB operator

ORDER BY sort()

Sorting data with respect to a given field in
MongoDB: sort() operator

SELECT *

FROM people

WHERE status = "A"

ORDER BY user_id DESC

db.people.find(

{ status: "A" }

).sort({ user_id: -1 })

DB
MG

MongoDB: counting

SELECT COUNT(*)

FROM people

db.people.count()

or
db.people.find().count()

MySQL clause MongoDB operator

COUNT count()or find().count()

DB
MG

MongoDB: counting

SELECT COUNT(*)

FROM people

WHERE age > 30

db.people.count(

{ age: { $gt: 30 } }

)

MySQL clause MongoDB operator

COUNT count()or find().count()

Similar to the find() operator, count() can embed
conditional statements.

DB
MG

MongoDB

Introduction to data aggregation

DB
MG

Aggregation in MongoDB

Aggregation operations process data records and
return computed results.

Documents enter a multi-stage pipeline that
transforms the documents into an aggregated
result.

DB
MG

MongoDB: Aggregation Framework

SQL MongoDB

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

//LIMIT $limit

SUM $sum

COUNT $sum

DB
MG

MongoDB: Aggregation

Aggregate functions can be applied to collections
to group documents

db.collection.aggregate({<set of stages>})

Common stages: $match, $group ..

The aggregate function allows applying
aggregating functions (e.g. sum, average, ..)

It can be combined with an initial definition of
groups based on the grouping fields

DB
MG

MongoDB: Aggregation

db.people.aggregate([

{ $group: { _id: null,

mytotal: { $sum: "$age" },

mycount: { $sum: 1 }

}

}

])

Considers all documents of people and

sum the values of their age

sum a set of ones (one for each document)

The returned value is associated with a field
called “mytotal” and a field “mycount”

DB
MG

MongoDB: Aggregation

db.people.aggregate([

{ $group: { _id: null,

myaverage: { $avg: "$age" },

mytotal: { $sum: "$age" }

}

}

])

Considers all documents of people and computes

sum of age

average of age

DB
MG

MongoDB: Aggregation

db.people.aggregate([

{ $match: {status: "A"} } ,

{ $group: { _id: null,

count: { $sum: 1 }

}

}

])

Counts the number of documents in people with
status equal to “A”

Where conditions

DB
MG

MongoDB: Aggregation

db.people.aggregate([

{ $group: { _id: "$status",

count: { $sum: 1 }

}

}

])

Creates one group of documents for each value of
status and counts the number of documents per
group

Returns one value for each group containing the
value of the grouping field and an integer
representing the number of documents

DB
MG

MongoDB: Aggregation

db.people.aggregate([

{ $group: { _id: "$status",

count: { $sum: 1 }

}

},

{ $match: { count: { $gte: 3 } } }

])

Creates one group of documents for each value
of status and counts the number of documents
per group. Returns only the groups with at least
3 documents

DB
MG

MongoDB: Aggregation

db.people.aggregate([

{ $group: { _id: "$status",

count: { $sum: 1 }

}

},

{ $match: { count: { $gte: 3 } } }

])

Creates one group of documents for each value
of status and counts the number of documents
per group. Returns only the groups with at least
3 documents

Having condition

DB
MG

MongoDB: Aggregation Framework

SQL MongoDB

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

LIMIT $limit

SUM $sum

COUNT $sum

DB
MG

SELECT status,

AVG(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $avg: "$age" }

}

}

])

Aggregation in MongoDB: Group By

MySQL clause MongoDB operator

GROUP BY aggregate($group)

DB
MG

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}

])

Aggregation in MongoDB: Group By

MySQL clause MongoDB operator

GROUP BY aggregate($group)

Group field

DB
MG

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

}

])

Aggregation in MongoDB: Group By

MySQL clause MongoDB operator

GROUP BY aggregate($group)

Group field

Aggregation function

DB
MG

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

])

Aggregation in MongoDB: Group By

MySQL clause MongoDB operator

HAVING aggregate($group, $match)

DB
MG

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

])

Aggregation in MongoDB: Group By

MySQL clause MongoDB operator

HAVING aggregate($group, $match)

Group stage: Specify
the aggregation field
and the aggregation
function

DB
MG

SELECT status,

SUM(age) AS total

FROM people

GROUP BY status

HAVING total > 1000

db.orders.aggregate([

{

$group: {

_id: "$status",

total: { $sum: "$age" }

}

},

{ $match: { total: { $gt: 1000 } } }

])

Aggregation in MongoDB: Group By

MySQL clause MongoDB operator

HAVING aggregate($group, $match)

Group stage: Specify
the aggregation field
and the aggregation
function

Match Stage: specify
the condition as in
HAVING

DB
MG

Aggregation in MongoDB

DB
MG

MongoDB Compass

GUI for Mongo DB

DB
MG

MongoDB Compass

Visually explore data.

Available on Linux, Mac, or Windows.

MongoDB Compass analyzes documents and
displays rich structures within collections.

Visualize, understand, and work with your
geospatial data.

DB
MG

MongoDB Compass

Connect to local or remote instances of MongoDB.

DB
MG

MongoDB Compass

Get an overview of the data in list or table format.

DB
MG

MongoDB Compass

Analyze the documents and their fields.

Native support for geospatial coordinates.

DB
MG

MongoDB Compass

Visually build the query conditioning on
analyzed fields.

DB
MG

MongoDB Compass

Autocomplete enabled by default.

Construct the query step by step.

DB
MG

MongoDB Compass

Analyze query performance and get hints to speed it up.

DB
MG

MongoDB Compass

Specify contraints to validate data

Find unconsistent documents.

DB
MG

MongoDB Compass: Aggregation

Build a pipeline
consisting of multiple
aggregation stages.

Define the filter and
aggregation attributes
for each operator.

DB
MG

MongoDB Compass: Aggregation stages

DB
MG

MongoDB Compass: Aggregation stages

The _id corresponds to
the GROUP BY

parameter in SQL

Other fields contain the
attributes required for
each group.

One group for each “vendor”.

DB
MG

MongoDB Compass: Pipelines

1st stage: grouping by vendor

2nd stage: condition over fields created in
the previous stage (avg_fuel, total).

DB
MG

MongoDB

Indexing

DB
MG

MongoDB: Indexes

Indexes are data structures that store a small
portion of the collection’s data set in a form easy
to traverse.

They store ordered values of a specific field, or
set of fields, in order to efficiently support
equality matches, range-based queries and
sorting operations.

DB
MG

MongoDB: Indexes

MongoDB provides different data-type indexes

Single field indexes

Compound field indexes

Multikey indexes

Geospatial indexes

Text indexes

Hashed indexes

DB
MG

MongoDB: Create new indexes

Creating an index

db.collection.createIndex(<index keys>, <options>)

Before v. 3.0 use db.collection.ensureIndex()

Options include: name, unique (whether to accept

or not insertion of documents with duplicate index
keys), background, dropDups, ..

DB
MG

MongoDB: Indexes

Single field indexes

Support user-defined ascending/descending
indexes on a single field of a document

E.g.,
db.orders.createIndex({orderDate: 1})

Compound field indexes

Support user-defined indexes on a set of fields

E.g.,
db.orders.createIndex({orderDate: 1,

zipcode: -1})

DB
MG

MongoDB: Indexes

MongoDB supports efficient queries of geospatial
data

Geospatial data are stored as:
GeoJSON objects: embedded document { <type>,
<coordinate> }

E.g., location: {type: "Point", coordinates: [-
73.856, 40.848]}

Legacy coordinate pairs: array or embedded document

point: [-73.856, 40.848]

DB
MG

MongoDB: Indexes

Geospatial indexes

Two type of geospatial indexes are provided: 2d
and 2dsphere

A 2dsphere index supports queries that

calculate geometries on an earth-like sphere

Use a 2d index for data stored as points on a

two-dimensional plane.

E.g.,
db.places.createIndex({location: “2dsphere”})

Geospatial query operators

$geoIntersects, $geoWithin, $near, $nearSphere

DB
MG

MongoDB: Indexes

{

<location field>: {

$near: {

$geometry: {

type: "Point" ,

coordinates: [<longitude> , <latitude>]

},

$maxDistance: <distance in meters>,

$minDistance: <distance in meters>

}

}

}

$near syntax:

DB
MG

MongoDB: Indexes

E.g.,
db.places.createIndex({location: “2dsphere”})

Geospatial query operators

$geoIntersects, $geoWithin, $near, $nearSphere

Geopatial aggregation stage

$near

DB
MG

MongoDB: Indexes

E.g.,
db.places.find({location:

{$near:

{$geometry: {

type: "Point",

coordinates: [-73.96, 40.78] },

$maxDistance: 5000}

}})

Find all the places within 5000 meters from the
specified GeoJSON point, sorted in order from
nearest to furthest

DB
MG

MongoDB: Indexes

Text indexes

Support efficient searching for string content in a
collection

Text indexes store only root words (no language-
specific stop words or stem)

E.g.,
db.reviews.createIndex({comment: “text”})

Wildcard ($**) allows MongoDB to index every
field that contains string data

E.g.,
db.reviews.createIndex({“$**”: “text”})

DB
MG

MongoDB operations

DB
MG

MongoDB: Databases and Collections

Each instance of MongoDB can manage multiple
databases

Each database is composed of a set of
collections

Each collection contains a set of documents

The documents of each collection represent
similar “objects”

However, remember that MongoDB is schema-less

You are not required to define the schema of the
documents a-priori and objects of the same
collections can be characterized by different fields

DB
MG

MongoDB: Databases and Collections

Show the list of available databases

show databases;

Select the database you are interested in

use <database name>;

E.g.,

use deliverydb;

Note: shell commands vs GUI interface.

DB
MG

MongoDB: Databases and Collections

Create a database and a collection inside the database

Select the database by using the command
use <database name>

Then, create a collection
MongoDB creates a collection implicitly when the
collection is first referenced in a command

Delete/Drop a database

Select the database by using use <database name>

Execute the command db.dropDatabase()

E.g.,
use deliverydb;

db.dropDatabase();

DB
MG

MongoDB: Databases and Collections

A collection stores documents, uniquely identified by a
document “_id”
Create collections

db.createCollection(<collection name>,
<options>);

The collection is associated with the current
database. Always select the database before creating
a collection.
Options related to the collection size and indexing,
e.g., e.g., to create a capped collection, or to create
a new collection that uses document validation

E.g.,
db.createCollection("authors“, {capped:
true});

DB
MG

MongoDB: Databases and Collections

Show collections

show collections;

Drop collections

db.<collection name>.drop();

E.g.,

db.authors.drop();

DB
MG

MongoDB: Read/Insert/Update data

MongoDB Relational database

db.users.find() SELECT * FROM users

db.users.insert({

user_id: 'bcd001',

age: 45,

status: 'A'})

INSERT INTO

users (user_id, age, status)

VALUES ('bcd001', 45, 'A')

db.users.update(

{ age: { $gt: 25 } },

{ $set: { status:

'C'}},

{ multi: true })

UPDATE users

SET status = 'C'

WHERE age > 25

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Field name

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Field value

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

Now people contains a new document representing
a user with:

user_id: "abc123",

age: 55

status: "A"

DB
MG

MongoDB: Insert documents

E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

favorite_colors: ["blue", "green"]

});

Now people contains a new document representing
a user with:

user_id: "abc124", age: 45

and an array favorite_colors containing the
values "blue" and "green"

Favorite_colors

is an array

DB
MG

E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

address: {

street: "my street",

city: "my city"

}

});

Example of a document containing a nested document

MongoDB: Insert documents

Nested document

DB
MG

MongoDB: inserting data

MySQL clause MongoDB operator

INSERT INTO insertOne()

New data needs to be inserted into the
database.

Each SQL tuple corresponds to a MongoDB
document

The primary key _id is automatically added if
the _id field is not specified.

DB
MG

INSERT INTO

people(user_id,

age,

status)

VALUES ("bcd001",

45,

"A")

db.people.insertOne(

{

user_id: "bcd001",

age: 45,

status: "A"

}

)

MongoDB: inserting data

MySQL clause MongoDB operator

INSERT INTO insertOne()

DB
MG

db.products.insertMany([

{ user_id: "abc123", age: 30, status: "A"},

{ user_id: "abc456", age: 40, status: "A"},

{ user_id: "abc789", age: 50, status: "B"}

]);

MongoDB: inserting data

Insert multiple documents in a single statement:
operator insertMany()

DB
MG

MongoDB: Insert documents

Insert many documents with one single command
db.<collection name>.insertMany([<comma

separated list of documents>]);

E.g.,

db.people.insertMany([

{user_id: "abc123", age: 55, status: "A”},

{user_id: "abc124", age: 45,

favorite_colors: ["blue", "green"]}

]);

DB
MG

MongoDB: Document update

Documents can be updated by using

db.collection.updateOne(<filter>,

<update>, <options>)

db.collection.updateMany(<filter>,

<update>, <options>)

<filter> = filter condition. It specifies which

documents must be updated

<update> = specifies which fields must be

updated and their new values

<options> = specific update options

DB
MG

MongoDB: Document update

E.g.,
db.inventory.updateMany(

{ "qty": { $lt: 50 } },

{

$set: { "size.uom": "in", status: "P" },

$currentDate: { lastModified: true }

}

)

This operation updates all documents with qty<50

It sets the value of the size.uom field to "in", the value
of the status field to "P", and the value of the
lastModified field to the current date.

DB
MG

MongoDB: updating data

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

Tuples to be updated should be selected using
the WHERE statements

DB
MG

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{ age: { $gt: 25 } },

{ $set: { status: "C" }}

)

MongoDB: updating data

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

DB
MG

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{ age: { $gt: 25 } },

{ $set: { status: "C" }}

)

MongoDB: updating data

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

UPDATE people

SET age = age + 3

WHERE status = "A"

db.people.updateMany(

{ status: "A" } ,

{ $inc: { age: 3 } }

)

The $inc operator increments a

field by a specified value

https://docs.mongodb.com/manual/reference/operator/update/inc/#up._S_inc

DB
MG

MongoDB: deleting data

MySQL clause MongoDB operator

DELETE FROM deleteMany()

Delete existing data, in MongoDB corresponds to
the deletion of the associated document.

Conditional delete

Multiple delete

DB
MG

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

MongoDB: deleting data

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DB
MG

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

MongoDB: deleting data

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DELETE FROM people db.people.deleteMany({})

