General Information
SSD: ING-INF/05
CFU: 8
Professor: Paolo Garza
Teaching Assistants: Simone Monaco and Claudio Savelli
Teaching Material
Introduction
- Introduction to the course content and exam rules (pdf)
- Introduction to Big Data (pdf)
- Big Data Architectures (pdf)
Hadoop and MapReduce
- Introduction to Apache Hadoop and the MapReduce programming paradigm (pdf)
- Interaction with HDFS and Hadoop using the command line (pdf)
- Hadoop implementation of MapReduce (pdf)
- Source code of the Word Count Ecplise project (WordCount.zip) – Use the import maven project option to import it into Visual Studio Code
- BigData@Polito environment + Jupyter – How to submit MapReduce jobs on BigData@Polito (pdf)
- MapReduce – Design patterns – Part 1 (pdf)
- MapReduce and Hadoop – Advanced Topics: Multiple inputs, Multiple outputs, Distributed cache (pdf)
- MapReduce – Design patterns – Part 2 (pdf)
- MapReduce – Relational Algebra/SQL operators (pdf)
Spark
- Introduction to Apache Spark (pdf)
- How to submit Spark applications (pdf)
- How to use Jupyter Notebooks for your Spark applications (pdf)
- You can install PySpark and JupyterLab using Conda/Miniconda/pip (instructions here)
- RDD-based programs
- RDDs: creation, basic transformations and actions (pdf)
- Some examples (partially selected from the slides): Examples – Notebook (ExamplesFromSlides.zip)
- Key-value RDDs: transformations and actions on key-value RDDs (pdf)
- Inner join, left outer join, right outer join, full outer join, and “NOT IN” with PairRDDs: Examples – Notebook (JoinsRDD.zip)
- DoubleRDDs (pdf)
- Advanced Topics: Cache, accumulators, broadcast variables, custom partitioners, broadcast join (pdf)
- RDD partition examples (RDDPartitionsExamples.zip)
- Introduction to PageRank (pdf) – Example: PageRank “naive” implementation (RDDPageRank.zip)
- RDDs: creation, basic transformations and actions (pdf)
- Spark SQL and DataFrames
- Spark SQL (pdf)
- Simple examples – Jupyter notebook (SparkSQLSimpleExamples.zip)
- Spark SQL join examples – Jupyter notebook (ExamplesSparkSQLJoins.zip)
- Spark SQL (pdf)
- Data mining and Machine learning algorithms with Spark MLlib
- Introduction and Preprocessing (pdf)
- Classification (pdf)
- Classification examples – Jupyter notebooks and sample data (ExampleClassificationMLlib.zip)
- Clustering (pdf)
- Clustering example – Jupyter notebook and sample data (ExampleClusteringMLlib.zip)
- Regression (pdf)
- Regression example – Jupyter notebook and sample data (ExampleRegressionMLlib.zip)
- Itemset and Association rule mining (pdf)
- Itemset and Association rule mining example – Jupyter notebook and sample data (ExampleItemsetMLlib.zip)
- GraphX/GraphFrames
- Introduction to GraphX and GraphFrames (pdf)
- Graph Algorithms with GraphFrames (pdf)
- Simple example – Jupyter notebook (GraphFrameExamples.zip)
- Select kernel GraphFrames (Yarn) to run it on jupyter.polito.it
- Run “pyspark –packages graphframes:graphframes:0.8.1-spark3.0-s_2.12 –repositories https://repos.spark-packages.org” to run it locally on your PC – Use package graphframes:graphframes:0.8.0-spark2.4-s_2.11 if you locally installed Spark 2 instead of Spark 3
- Streaming data analytics
- Spark Streaming Spark Streaming (DStreams) (pdf)
- Simple examples – Jupyter notebooks (SparkSteamingExamples.zip)
- Structured Streaming (pdf)
- Simple examples – Jupyter notebooks (SparkStructutedStreamingExamples.zip)
- Introduction to other big stream processing frameworks: Apache Storm, Apache Flink, .. (pdf)
- Spark Streaming Spark Streaming (DStreams) (pdf)
Exercises
MapReduce
- MapReduce Exercises (slides)
- Solutions of Exercises 1-29 (SolutionsExMapReduce.zip)
To configure Visual Studio Code on your laptop, follow these instructions.
Spark
- Spark exercises (pdf)
- Example data – One folder with (few) data for each exercise (ExSparkData.zip)
- RDD-based solutions of Exercises 30-46 – Jupyter notebooks (SparkNotebooksSol30_46.zip)
- Solution of Exercise 44 based on Left Outer Join (ex44LeftOuterJoin.zip)
- Solution of Exercise 46 based on Spark SQL APIs + RDD.groupByKey() – Example to show how to create and manage “static windows” with almost only Spark SQL APIs (ex46_DF.zip)
- PySpark Installation Guide
- How to run PySpark applications on your PC or Google Colab: You can install PySpark and JupyterLab using Conda/Miniconda/pip (instructions here)
- Spark SQL exercises (pdf)
- Example data – One folder with (few) data for each exercise (ExSparkSQLData.zip)
- Solutions of Exercises 47-50 – Jupyter notebooks (SparkNotebooksSol47_50.zip)
- Spark MLlib exercises (pdf)
- Example data – One folder with (few) data for each exercise (ExampleMLlibData.zip)
- Solutions of Exercise 51 (SparkNotebooksSol51.zip)
- GraphFrame exercises (pdf)
- Example data – One folder with (few) data for each exercise (ExampleGraphFrameData.zip)
- Solutions of Exercises 52-57b – Jupyter notebooks (SparkNotebooksSol52_57b.zip)
- Spark streaming exercises (pdf)
- Example data – One folder with (few) data for each exercise (ExampleSparkStreamingData.zip)
- Solutions of Exercises 58-65 – Jupyter notebooks (SparkNotebooksSol58_65.zip)
- Spark structured streaming and MLlib exercise (pdf)
- Example data – One folder with (few) data for each exercise (ExampleSparkStructuredMLlibData.zip)
- Solution of Exercise 66 – Jupyter notebooks (SparkNotebooksSol66.zip)
Laboratory Material
No lab activities during the first week.
Team 1: Students from A to K – Tuesday from 11:30 to 13:00 (First lab activity – March 4, 2025) @ LABINF
Team 2: Students from L to Z – Friday from 11:30 to 13:00 (First lab activity – March 7, 2025) @ LABINF
Laptop Configuration
- MapReduce installation Guide: Configure Visual Studio Code on your laptop (📘guide).
- Windows users only: You must configure the winutils (🗃️winutils.zip) and set up some environmental variables. Follow this 📘extra guide for the complete configuration.
- Laboratory materials are available in multiple versions. The version with libraries is the only one you can use on the LABINF computers. Use it on your laptop if you are not interested in running the applications locally. All the other versions are Maven projects, so you can use them locally on your laptop to write the code and then run it locally inside Visual Studio Code or on the BigData@Polito cluster (pay attention that the way you export the jar is different with Maven!). The legend follows: 📚lib: Project/template with libraries, 🐧mavU: Maven project for Linux/MacOS, 🪟mavW: Maven project for Windows (Hadoop projects only).
- PySpark Installation Guide: How to run PySpark applications on your PC or Google Colab: You can install PySpark and JupyterLab using Conda/Miniconda/pip (📘guide).
Problem specifications and solutions
Problem specification and input data | Solution |
Lab 1: Hadoop and MapReduce Problem specification (📄pdf) Basic project and small example dataset (📚lib) Basic project based on Maven – Use this version to run the MapReduce application locally on your PC (DO NOT USE IT AT LABINF) — Linux and macOS (🐧mavU) — Windows (🪟mavW) — Bigger dataset: finefoods_text.txt (zip) | Solution (Maven-based): Bonus track Lab1_SolBonusMvn.zip |
Lab 2: Filter with Hadoop MapReduce Problem specification (📄pdf) Skeleton project Hadoop — MapReduce with libraries (📚lib) Basic Maven project (NOT FOR LABINF) (🐧mavU, 🪟mavW) Outputs of the first lab (OutputFolderLab1.zip) (OutputFolderLab1BonusTrack.zip). You can use them to test your application locally on your PC. | Solution: Lab2_Sol.zip Solution Bonus track: Lab2_SolBonus.zip |
Lab 3: Frequently bought/reviewed together with Hadoop and MapReduce Problem specification (📄pdf) Skeleton project Hadoop — MapReduce (📚lib) Basic Maven project (NOT FOR LABINF) (🐧mavU, 🪟mavW) Sample data (📃AmazonTransposedDataset_Sample.txt) | Solution: Lab3_DBD_Sol.zip – This project is based on mvn — Comments on the three uploaded solutions (pdf) — The second solution MUST NOT BE USED – It is highly inefficient |
Lab 4: Normalized ratings for product recommendations with Hadoop MapReduce Problem specification (📄pdf) Skeleton Eclipse project Hadoop – MapReduce (📚lib) Basic Maven project (NOT FOR LABINF) (🐧mavU, 🪟mavW) Sample file (📅ReviewsSample.csv) |
Additional material
Slides and screencasts about Java (kindly provided by Prof. Torchiano) (link)
Focus on the following subset of slides/lectures (for students who have never used Java):
— OO Paradigm and UML (The UML part is not mandatory)
— The Java Environment
— Java Basic Features
— Java Inheritance